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Introduction

Example of divergence or curl constraint

o Consider one equation of a hyperbolic system where u is a vector
u+V-G=0
o IfGis an homothety, then

ou+Vg=0 = 0;(Vxu)=0.

o e.g. wave system, low Mach number limit

o If G is skew-symmetric, then

u+Vxg=0 = 9 (V-u)=0.

o e.g. Maxwell system, (MHD equations)
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Introduction

Staggered schemes

o Lebedev, 1964 MAC scheme, Yee, 1966 Yee scheme

o Formalized through differential geometry (de-Rham complex)
o Electromagnetism

o A. Bossavit : electromagnetism
o R. Hiptmair : Num. Math. 2001, Acta Num. 2002

o Finite Element Exterior Calculus
o D. Arnold, Acta Num. 2006, Bull. AMS 2010, SIAM 2018
o Extensions to polygonal/polyhedral meshes (VEM, HHO,CDO)
@ A lot of applications also on hyperbolic systems (Staggered schemes)

o MHD : preservation of V-B =0
o Low Mach number flows (curl preservation)
o GRP multiphase model : preservation of V x w =0
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Introduction

Low Mach number flows/Wave system

Inflow :
Poo =1
uy, = My X c(peo) i
u =0
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Introduction

Low Mach number flows/Wave system

@ Low Mach number flow, Roe scheme
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Introduction

Low Mach number flows/Wave system

@ Low Mach number flow, Roe scheme
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Reference Quadrangle Triangle
@ Low Mach number flow, Lax-Friedrich
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Introduction

Low Mach number flows/Wave system

@ Low Mach number flow, Roe scheme
ﬁ‘;%?}*’& ~ L Em ] Hmmi;%z :

Reference Quadrangle Triangle
@ Waves, Godunov scheme, long time limit

Exact Quadrangle Triangle
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Introduction

Low Mach number flows/Wave system

@ A surprising result : Roe scheme is low Mach number accurate on triangles!

o F.Rieper, G. Bader, JCP 2009 : structured triangles

o H. Guillard, Comp. & Fluids 2009 : unstructured triangles/tetrahedra

o P. Omnes, S. Dellacherie, F. Rieper JCP 2009 : discrete Hodge-Helmholtz
decomposition

o J. Jung, VP, SIAM SISC 2024 : high order DG on triangles and tetrahedra.

o Long time behaviour of the wave system ( J. Jung, VP, JCP 2022)

O¢p + diveu =0
6tu + VP == 0

<= Conservation of the vorticity.
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Introduction

Low Mach number flows/Wave system

@ A surprising result : Roe scheme is low Mach number accurate on triangles!

o F.Rieper, G. Bader, JCP 2009 : structured triangles
o H. Guillard, Comp. & Fluids 2009 : unstructured triangles/tetrahedra
o P. Omnes, S. Dellacherie, F. Rieper JCP 2009 : discrete Hodge-Helmholtz

decomposition
o J. Jung, VP, SIAM SISC 2024 : high order DG on triangles and tetrahedra.

o Long time behaviour of the wave system ( J. Jung, VP, JCP 2022)

O¢p + diveu =0
6tu + VP == 0

<= Conservation of the vorticity.

o Is there a similar framework for discontinuous
approximation space as for staggered approximation ?
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Outline of the talk

© Focus on the low order triangular case

© Continuous and discrete conforming de-Rham complex

© Nonconforming discrete de-Rham complex and preservation of curl or
divergence constraints

@ Numerical results
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Focus on the low order triangular case
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The continuous case (1/2)

Hodge-Helmholtz decomposition

Hodge-Helmholtz decomposition

curlu, =0
diVXU\u =0

u=u,+uy with {

@ When the domain is connected

u, =Vyp
uy = curl, ¥

@ Usually computed by potentials extraction
u=uy,+uy

divyeu = divy (uy) + divk (uy) = Ap
=0
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The continuous case (1/2)

Hodge-Helmholtz decomposition

Hodge-Helmholtz decomposition

curlu, =0

u=u,+uy with { divyuy =0
Uy =

@ When the domain is connected
u, =Vyp
uy = curl, ¥

@ Usually computed by potentials extraction
u=uy,+uy

curlyu = curly (u,) +curl, (uy) = V (div, W) — AW
N—_—— —_—
=0 +gauge condition
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The continuous case (1/2)

Hodge-Helmholtz decomposition

Hodge-Helmholtz decomposition

curlu, =0

u=u,+uy with { divyuy =0
Uy =

@ When the domain is connected
u, =Vyp
uy = curl, ¥
@ Usually computed by potentials extraction

@ Preservation of a curl or a divergence

o Preserving a curl = preserving W or curl,W
o Preserving a divergence = preserving ¢ or V.

Characterization of divergence/curl free vector fields

o Curl free vectors are such that uy =0
o Divergence free vectors are such that u, =0

Uniqueness/orthogonality depends on boundary conditions
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The continuous case (2/2)

Structure of the wave system that is preserved

8tP + diqu =0
Ou+c?Vp=0
+ Boundary conditions p, and up

Structure preserved and long time limit

Given an initial condition ug, a uniform p, and u, such that / up -n =0, then
o9

o For any u,
Ap =divyu
{Vgo-n:u-n—ubon (1)
has a unique solution up to a constant.
o uy(x,t) :=u(x,t) — Vxp(x, t) is constant
o the long time limit is (pp, uy(0)).
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Triangular case

@ Discrete Hodge-Helmholtz decomposition on triangles

dP,/R? = VP, @ VCR

=Vt Pv

@ Finite element spaces

o dP, : piecewise constant vectors

o IP; : continuous finite element space

o CR : Crouzeix-Raviart finite element space
@ Introduced in Arnold, 1989

o Used for low Mach number/long time behaviour of the wave system

o S. Dellacherie et. al, 2009
o J. Jung, V.P., 2021
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Structure preserved for the wave system

u -n+ug-n

c/1 0 PL — PR
PL“}“PR“ +§(O D(n))(UL—UR>
2

m
I

o Godunov' scheme : D(n) = nn"

o Lax-Friedrich scheme : D(n) =14

Partial preservation of the Hodge-Helmholtz decomposition

On triangles, with the Godunov' scheme, if
ug € dPy = VJ"I/J @ Vo,

with 1) € P; and ¢ € CR, then V1) is preserved.
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Structure preserved for the wave system

u -n+ug-n

c/1 0 PL — PR
PL“}“PR“ +§(O D(n))(UL—UR>
2

m
I

o Godunov' scheme : D(n) = nn"

o Lax-Friedrich scheme : D(n) =14

Partial preservation of the Hodge-Helmholtz decomposition

On triangles, with the Godunov' scheme, if
ug € dPy = VJ"I/J @ Vo,

with 1) € P; and ¢ € CR, then V1) is preserved.

But which curl is preserved ?
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Curl preservation

Adjoint curl (Vl)*

@ Definition of the curl

VJ‘:]P’1P—>d]P0
¢ — Vip

@ Definition of the adjoint discrete curl
Yu € dPy, o € Py /QO(VL)*UZ/VJ‘QD-U
Q Q

* .
o (V1)" oMgp, is second order accurate.

o (V+)" is preserved by the Godunov' scheme
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Curl preservation

Adjoint curl (Vl)*

@ Definition of the curl

VJ‘:]P’1P—>d]P0
¢ — Vip

@ Definition of the adjoint discrete curl

Yu € dPy, o € Py /QO(VL)*UZ/VJ‘QD-U
Q Q

* .
(V4)" o MNgp, is second order accurate.

(V+)" is preserved by the Godunov' scheme

@ Functional analysis : a derivation operator is decreasing the order, and
decreasing the regularity
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Curl preservation

Adjoint curl (Vl)*

@ Definition of the curl

VJ‘:]P’1P—>d]P0
¢ — Vip

@ Definition of the adjoint discrete curl

Yu € dPy, o € Py /QO(VL)*UZ/VJ‘QD-U
Q Q

* .
(V4)" o MNgp, is second order accurate.

(V+)" is preserved by the Godunov' scheme

@ Functional analysis : a derivation operator is decreasing the order, and
decreasing the regularity

o Differential geometry : a derivation operator is an operator that ensures the
Leibniz rule
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Numerical results

Preservation of the curl (periodic domain)

P =P
=2
uy=—=e "
r
X 0_;2
u,=—e
)
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Numerical results

Preservation of the curl (periodic domain)

—A— Godunov
—#— Lax-Friedrich

2.54

2.0

0.5

0.0 4
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Continuous and discrete conforming de-Rham complex
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de-Rham complex

o Starting from
V x(Vf)=0 V-(Vxu)=0
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de-Rham complex

o Starting from
V x(Vf)=0 V-(Vxu)=0

@ The operators are written in the smooth de-Rham complex

v Vx V-
¢ ———— F°R ——— 3 FP QR ——— ¥

@ Two-dimensional version

v L.
E° — SEOQR? —— >
VJ_ -V-
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de-Rham complex

o Starting from
V x(Vf)=0 V-(Vxu)=0

@ The operators are written in the smooth de-Rham complex
v 3 V x 3 V-
€ — IR — 5 EFCPRIR —— €
@ Two-dimensional version
v L
C® ——— s QR ———— €™
vJ_ -V-

@ Natural question :

Is the sequence exact ?

ker V ker V x /RangeV
ker V - / Range V x Range V-
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Dimension of ker V

dim ker V = #{connected components} = by
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Topology of Emmental

.‘:\h\.. -7
by = dim (ker V x / Range V) by = dim (ker (V - / Range VX))
(number of holes in a slice) (number of cavities in the wheel)
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Discrete conforming de-Rham complex

Hl \Y chrl VX Hdiv % L2
| l | |
\Y \Y Ve
Pret1 " N k1 hx RTy 1 P APy

@ P41 : continuous finite element

o Ny, : tangential conforming (edge Nédélec)

@ RTy; : normal conforming (Raviart-Thomas/face Nédélec)
o dP, : discontinuous finite element

Usual properties (Arnold, 2018)

@ Approximation property
@ Sub-complex property

@ bounded cochain projection (commutation between projections and exterior
derivative)
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Discrete conforming de-Rham complex

\ VX . V-

Hl chrl Hdlv L2
| l | |
\Y \Y Ve
Pret1 " N k1 hx RTy 1 P APy

@ P41 : continuous finite element

o Ny, : tangential conforming (edge Nédélec)

@ RTy; : normal conforming (Raviart-Thomas/face Nédélec)
o dP, : discontinuous finite element

Discrete harmonic gap property

bo =dim (ker V)

=dim (ker(V,x)/ Range V)
b2 dim (ker (V-)/ Range(V %))
bs =dim (Range V)

V.Perrier Preservation of differential constraints with DG March, 18th-20th 2025 — Pau 19/34



Nonconforming discrete de-Rham complex and

preservation of curl or divergence constraints
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Triangular case

@ Discrete Hodge-Helmholtz decomposition on triangles
dP,/R? = V*P; @ VCR

@ may be rewritten

P,  dP, AP (F)
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Triangular case

@ Discrete Hodge-Helmholtz decomposition on triangles

dP,/R? = V*P; @ VCR

@ may be rewritten

Discrete harmonic gap property for the nonconforming complex
1=dim kethJ-)
2=dim (ker (V) / Range (V7))
1=dim (Range (V)
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Triangular case

@ Discrete Hodge-Helmholtz decomposition on triangles
dP,/R? = V*P; @ VCR
@ may be rewritten and generalized

Vi V-
]ID[(+]_ > d]P’k dP,_4 (C) x dIPy (.F)

Discrete harmonic gap property for the nonconforming complex

1=dim kethJ-)
2=dim (ker (V) / Range (V7))
1=dim (Range (Vg ))
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Triangular case

@ Discrete Hodge-Helmholtz decomposition on triangles
dP,/R? = V*P; @ VCR
@ may be rewritten and generalized

Vh VJ_/‘
]ID[(+]_ > d]P’k dP,_4 (C) x dIPy (.F)

Discrete harmonic gap property for the nonconforming complex

1=dim (ker V)
2=dim (ker (V%,) / Range (V1))
1=dim (Range (VJ‘,~))
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Quadrangular case

Low order

@ Triangular non conforming complex

Vi A
[Pk+1 d]Pk de—l (C) X de (]:)
Vh Vi,.

@ Quadrangular non conforming complex

oS (()(2) () men

@ On the two-dimensional torus

Discrete harmonic gap property for the nonconforming complex

1=dim (ker V)
2 =dim Eker (VZ.-) / Range (V4))
1=dim (Range (V%,-))
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Quadrangular case

@ Triangular non conforming complex

Vi Vo
Pk+1 d]Pk d]Pk_l (C) X d]Pk (.F)
Vi Vi,.

@ Quadrangular non conforming complex

Vi ) V- .
Qk+1 E—— d]B(Iiill EE—— d@k (C) X d]P’k (JT“)
Vh v%#

Q41 —— dBYY] ——— dQx (€) x dPx (F)

@ On the two-dimensional torus

Discrete harmonic gap property for the nonconforming complex

1=dim (ker V)
2=dim (ker (V3,-) / Range (V1))
1=dim (Range (Vl,'))
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Conservation of an curl

Discrete conservation of a curl

Consider the discontinuous Galerkin discretization

Find u € dB, Vv € dB,

Z/Cv.atu—Z/CE:Vv+Z/S[[V]|.a:0

cec cec Ses
if
o G=gly
o dB = dB{"v
@ the numerical flux is

=~ g+ ggrn

A
G= 3 +§nnT(uL—uR)

then (VL)* u is preserved
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Conservation of an divergence

Discrete conservation of a divergence

Consider the discontinuous Galerkin discretization

Find u € dB, Vv e dB,
Z/v-@tu—Z/E:Vv+Z/[[v]|~é:0
cec’€ cec/C ses’s

If
o G=gx
o dB = dBj™!
o the numerical flux is

1 1
= n n
G:gL + 8r

A
5 +§(I*I’IHT) (UL—UR)

then V* is preserved.
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Numerical results
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Meshes considered

V.Perrier
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Cartesian Unstructured quad

Unstructured triangles
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Two dimensional Maxwell system

Preservation of the divergence

O:b+Vt.e=0
3te+VJ‘b:0
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Two dimensional Maxwell system

Preservation of the divergence

O:b+Vt.e=0
3te+VJ‘b:O

dQ;., Godunov C10-12 B!, Godunov

0.20
0.15 4 34
0.10 4 24
0.05 1
0.00 1 o]

0 1 2 3 0 1 2 3

dQ;.., LaxFriedrich B!, LaxFriedrich

0.20 0.20

<,
0.15 4 0.15 4
0.10 4 0.10 4
0.05 4 0.05 4
0.00 1 - 0.00 1

0 1 2 3 0 1 2 3

—8— Quad, degree 0 —<— Cartesian, degree 0 —#— Triangles, degree 0
—¥— Quad, degree I~ —»— Cartesian, degree 1~ —#— Triangles, degree 1
—A— Quad, degree 2 —@— Cartesian, degree 2 —+— Triangles, degree 2
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Two dimensional Maxwell system

Convergence

w
b(x, t) = — cos (ki 7ry) sin (k” T — wt)
2

o /0=7)
ex(x, t)=—k | m sin (k 7ry) cos (k wxfwt) +2Kp o X ———————
x L L Il 1—7)2
o—a/(1-72)
ey (x, t) = k| 7 cos (k 1ry) sin (k wxfwt) +2Kp oy ———————
Y I L I 0 -2
" / w
107!
s
z
S 10-
=
s}
o
pRpT
10t
10"
2x 1072 3x 1072 ll x 1072 61072 10! 2x10°% 321072 k«l x 1072 6x10°% 101
1 1
—o— dQ, Godunov —— dQ; Godunov —de— dQ, Godunov
—y— dQ, Lax-Friedrich —o— dQ; Lax-Friedrich —o— dQ, Lax-Friedrich
—A— B§"! Godunov —m— B{""! Godunov —a— B§"! Godunov
—<— B{"' Lax-Friedrich ~ —g— B{"' Lax-Friedrich =~ —— B$"' Lax-Friedrich
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Two dimensional Maxwell system

Convergence

w
b(x, t) = — cos (ki 7ry) sin (k” T — wt)
2

ex(x, t)= —k m sin (klwy) cos (k” X — wt)

ey(x, t) = kH T cos (kL 1ry) sin (kH X — wt)

o /0=7)

2K x
+2Kp a x Y,
o—a/(1-72)

2Ky oy
0T TR

100

107

107

L? Error(e,)

107

100

10

L? Error(e,

10

10

—_—

D07 5xI0? 4107 Gxi0?
h

—o— dQ; Godunov
—y— dQ, Lax-Friedrich
—A— B§"! Godunov
—< B{""! Lax-Friedrich

Preservation of di

0

—— dQ; Godunov
—o— dQ; Lax-Friedrich
—m— B{""! Godunov
—e— B{""!' Lax-Friedrich

07 5xI07 4107 Gx10F -
h

—#— dQ, Godunov
—o— dQ, Lax-Friedrich
—a— B§"! Godunov

—— B§"! Lax-Friedrich
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Two dimensional Maxwell system

Convergence

w
b(x, t) = — cos (ki 7ry) sin (k” T — wt)
2

o—a/(1-72)
ex(x, t)=—k | m sin (k 7ry) cos (k T — wt) +2Kg a X ——————
L L Il 1—7)2
o—a/(1-72)
ey (x, t) = k| 7 cos (k 1ry) sin (k T — wt) +2Kp oy ———————
Y I L I 0 -2
LN —= 100 /
o e
E >
o3 o
oy 0 o .
0
107t
w0
107
2x 1072 3x107 4x 1072 61072 10! 2x10°% 3x107% 4x107% 6x10°% 101
i h
—o— dQ, Godunov —— dQ; Godunov —de— dQ, Godunov
—y— dQ, Lax-Friedrich —o— dQ; Lax-Friedrich —o— dQ, Lax-Friedrich
—A— B§"! Godunov —m— B{""! Godunov —a— B§"! Godunov
—_

—< B{"' Lax-Friedrich ~ —g— B{""' Lax-Friedrich B! Lax-Friedrich
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Two dimensional Induction equation

Regular rotating magnetic loop

dib + V= (det(u,b)) +uV-b =0

-2
ux = —2Kgay el UT)
(1-=7)
u bo(x) _ ifr<r _ _&/(1_72)
uy = 2Kpax —re =
1=r)
ifr>r 0,
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Two dimensional Induction equation

Divergence preservation

X107 11

0.0 0.5 1.0 1.5 2.0 25 3.0
time

—8— Quad, degree 0 —<— Cartesian, degree 0 ~— Triangles, degree 0
~¥— Quad, degree 1 —»— Cartesian, degree 1 —&— Triangles, degree 1
—&— Quad, degree 2 —&— Cartesian, degree 2 —#*— Triangles, degree 2
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Two dimensional Induction system

Convergence

// )
T =
= z
= =
5 5
8 s
sl 3

= = o
o o
N 3
104

. o degree0

w0 3 degre1

- 4 degree 2

2x107% 3x1072 4x 1072 6x1072 10!

10 25107 3102 4x10F | 6xi0?
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Two dimensional Induction system

Convergence

107

L? Error(u,

/ s

L? Exror(u,)

-
-

degree 0
¥ degree 1
—4— degree 2

10!

-
25102

102

6102
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Conclusion
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Conclusion

@ On Triangles
o The space dPPx can be naturally included in a discrete distributional de-Rham
complex.
o With mild assumption on the numerical flux, divergence or curl constraints are
preserved with the discontinuous Galerkin method.

@ On Quads

o Discrete spaces can be also built for quads.
o Same assumptions as for triangles on the numerical flux ensure the
conservation of divergence or curl.

@ Main ideas

e Some of the discrete operators are taken in the distribution sense.
o Curl and divergence that are preserved are defined in the adjoint sense.
o Galerkin methods are naturally well suited with adjoint differential operators.

@ Prospects

o Applications to other systems (MHD, low Mach number flows).
o Higher order involutions (elasticity, relativity).
o Extensions to 3d.
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