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Ultrasound imaging in soft tissues

- Technical progress in sensors manufacturing over the last decades
and access to extensive computational resources imply that the
fidelity of the image relies on the reconstruction algorithm and the
underlying mathematical model.

- Conventional ultrasound imaging algorithms rely on the assumption
that the speed of sound is constant in the medium.

[ Can we go beyond this limitation? ]
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Ultrasound imaging in soft tissues

- In soft tissues, the measured echoes come
from numerous weakly contrasted
unresolved scatterers.

- State of the art models

- produce stable solutions w.r.t. the
sizes and positions of the scatterers

- see their performance deteriorate when
the number of scatterers increases.

. - do not account for the change of
20 -0 0 10 20 effective properties due to the presence
 (mm) of scatterers.

In-vivo image of a human liver [1]
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Ultrasound imaging in soft tissues

- In soft tissues, the measured echoes come
from numerous weakly contrasted
unresolved scatterers.

- We aim at providing a mathematical
framework for wave propagation in random
multi-scale media.

First goal: Derive a quantitative asymp-

totic expansion of the measured field

TR T w.r.t. the size of the scatterers using
x (mm) stochastic homogenization.

In-vivo image of a human liver [1]

[1] W. Lambert, Matrix approach for ultrasound imaging and quantification, PhD
thesis (2020).
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Quantitative medical ultrasound imaging

Second goal: justify mathematically the estimators of the effective
speed of sound in biological tissues introduced by A. Aubry [2]

- Motivations

- An incorrect speed c in the algorithm leads to a distorted image.

- The speed of sound is a quantitative biomarker that can be used for
diagnosis (breast cancer, hepatic steatosis...).

[2] F. Bureau, Multi-dimensional analysis of the reflection matrix for quantitative
ultrasound imaging, PhD thesis (2023).
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Presentation of the model

- We illuminate a smooth bounded medium D C IR? with an incident
wave u' with wave number k.

- In D lies a set of small randomly
distributed inclusions S; := (5F)jeq1,n,) of
size ¢ << k~1. Typically N, ~ e 9.

- The medium parameters in D are given by
as := am + Z(aj — am)]lsjs,

ne :

i
3
3
_|_

!

(nj — nm)]lsjs.

where ap,, aj € My(R) are uniformly
elliptic and np,, nj € (n—, ny) with n_ > 0.

- The free space R? \ D is homogeneous
Schema of the model with parameters / and 1.
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Structure of the presentation

1. Scattered wavefield in the stochastic homogenization regime
Effective model
First-order asymptotic expansion
Numerical simulations

2. Speed of sound estimation
Analysis of the point spread function in the paraxial regime
Estimation of the effective speed of sound in tissue-mimicking media
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Equation verified by the wavefield wu,

- As. the total wavefield v, is the unique solution in HL_(RY) of

—V - (I 4 (ac— Nxp)Vue — k?(1 + (ne — 1) xp)ue = 0 in RY,

ue — u' verifies Sommerfeld radiation condition.
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Equation verified by the wavefield wu,

- Let Bg D D be the ball of radius R and /A : Hz (0Bgr) — Hf%(aBR)
be the DtN operator associated to —Au — k?u = 0 + Sommerfeld r.c..

We consider w, the unique solution in H(5z) to

-V (I + (as - I)XD)VUS - k2(1 + (’78 - 1)XD>UE =0 in Bp,

On(ue — u') = A(ue — u') on dBg.
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Equation verified by the wavefield wu,

- Let Bg D D be the ball of radius R and /A : Hz (0Bgr) — Hf%(BBR)
be the DtN operator associated to —Au — k?u = 0 + Sommerfeld r.c..

We consider w, the unique solution in H(5z) to

-V (I + (as - I)XD)VUS - k2(1 + (’78 - 1)XD>UE =0 in Bp,

On(ue — u') = A(ue — u') on dBg.

- We suppose that the sesquilinear form associated to (1) is coercive.

There exists Cr independent of € and the realization such that

l|uell 1 (Br) < Crlluillpap)-
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Random setting

- Let {x;}; denote the point process corresponding to the centers of the

inclusions. Let S; be the inclusion with size 1 centered at x;.

- We suppose that {x;}; is stationary, i.e. its distribution law IP is
independent of the spatial variable.

- Let S = U S; be the set of inclusions in RY. We define for x € R

JEN
=am+ Z —am 15( )
JjeN
and n(x) =nm+ )  (x)
JEN

Then S; :=eSND, a(-) := a(;) and ne(-) := n(3).

Schema of the medium for different «.
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Definitions
- Let Q) be the set of point processes in R9.

- We introduce the translation operator 7: Q) x R — Q
/
Vo € O, Vx e RY, 7(@,x) =@ st. Vj €N, xjO = xf’ + x.

The action (Tx),cRd Preserves the measure IP.

Definition : f : RY x Q) — RP is said to be stationary w.r.t T iff

Vx,y e RY Vae@e, fP(x+y)=rF"?(x).

We suppose moreover that the action (Tx),crd is ergodic.

Theorem : Birkhoff ergodic theorem

Let f € L} _(R9, L1(Q))) be a stationary process w.r.t. an ergodic

action. Then a.s. and in L}(Q)

Vx € RY, L/ f(y+x)dyF>]E(f).
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Coherent wave

- A.s. for all ball B, ue converges weakly in HY(Bg) to u* solution of

~V - (I+(a* = Nxp)Vu* — k?>(1+ (n* — 1)xp)u* =0 in Bg,

on(u* —u') = A(u* —uf) on dBg.

where the homogenized coefficients a* and n* are defined as

Vi j € [|1,d[], af; = E[e; - a(ej + V¢;)], and n* = E[n].

¢; is the standard corrector in stochastic homogenization.
=
Tu ue — ur

_—

RY\ D
\ Figure: Homogenized model
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Corrector equation

- For i € [|1, d|], there exists a unique ¢; (up to a random constant) s.t.
(a) as. ¢i(-) € HE (R9) is solution of

—V-a(y)(Vei(y) +e) =0 inD'(RY), ]

(b) V¢ € L2 _(RY, L%(Q)), V¢; is stationary and E(V¢;) = 0.

loc

Figure: Numerical simulations of the correctors (left: ¢1, right: ¢2)
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Structure of the presentation

1. Scattered wavefield in the stochastic homogenization regime

First-order asymptotic expansion

2. Speed of sound estimation
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Corrector bounds

- In order to establish error estimates, we add a quantitative mixing
assumption Hp, on S [3]. Hp, implies in particular that its covariance
function is integrable.

Theorem: Corrector bounds 3]

Under H,, there exists an a.s. finite random field x — C(x) with
exponential moments s.t.

d 2 %
wxe R (£ 107)" < cOomatlx)
where Oy := [—% + x, % —|—x]d and

1
N Jllog(2+)|2 ifd=2,
Hal): {1 if d = 3.

\ J

[3] A. Gloria, S. Neukamm, F. Otto (2019), S. Armstrong, T. Kuusi, JC. Mourrat
(2019)
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First-order two-scale expansion in D
- For x € D, we define vy (x Z 4), (x).

Theorem: Error estimates

Under a quantitative mixing assumption on
a and n, for all ball B

1
Ell e — o*| 2 gy 12 S e £ ).

1 1\2
Ell|ue — o — et )2 S e pia (E) |

. v,

This result was known for Laplace Dirichlet or Neumann problems [4],
but not for the Helmholtz transmission problem. It required to introduce
the associated boundary correctors and quantify them.

[4] Quantitative stochastic homogenization and large-scale regularity, S. Armstrong, T.
Kuusi, JC. Mourrat (2019)
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Main steps of the proof
- We write the problem verified in Bg by v := v, — v* — euilp.

- Let 0. be the boundary corrector s.t. ve — 8 verifies the transmission
conditions on 9D. 8, € HY(Bg \ D) x HY(D) is the a.s. solution of:

—AO; — k%6, =0 inBg \ D,
—V -2Vl — k®>n.e =0 inD,

0, —0F = ey onaD,
0nb; — acdnb; -v=¢e¢F. onaD,
Onbe = A(6;) on Bk,

with F; that depends on correctors and u*.

- Related works on boundary layer correctors:
- Periodic setting: Gérard-Varet, Masmoudi (2011-2012) - Prange
(2013) - Fliss, Joly, Vinoles (2016) - Cakoni, Guzina, Moskow (2016)
- Beneteau, Claeys, Fliss (2021).
- Stochastic setting: Armstrong, Kuusi, Mourrat (2019) - Josien,
Raithel (2021). vayes



Main steps of the proof

- We write the problem verified in Bg by v := v, — v* — euilp.

- Let 0. be the boundary corrector s.t. ve — 8 verifies the transmission
conditions on 9D. 8, € HY(Bg \ D) x HY(D) is the a.s. solution of:

—A@e — k%0, =0 in Bg \ D,
~V -a3. V0 — k?neb: =0 inD,

0; —0f =eun onaD,
0n0; — a:0p0; -v=2¢F; onaD,
9n0: = A(0;) ondBg,

with F that depends on correctors and u*.
- We estimate the Hl-norm of v, — 6, thanks to the correctors bounds.

- We estimate the L2- and H- norms of 6. which verifies a similar
problem as v, with oscillatory data on dD.
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A new integral representation for the total field

- For z € Bg \ D, ug verifies

u(2) = *(2) +/(a*—a€)Vug-VG*(-,z)
D
2 ne — n*)uG*(-, z).
2 [ (0= )6 (- 2)

where G*(-,y) is the Green function associated to the homogenized
problem, i.e. the unique solution for y € Bg of

~V-(I4+(a*=Nxp)VG* — k*(1+ (n* —1)xp)G* =4, in Bg,
9,G* = AG* on 9Bg.

15/42



Asymptotic expansion of of the outer field

Let « > 0. Under H,, for z € Bg \ (1 +a)D

d+1

Var [ue(z) — u* ()~ (2)1} S ¥ (1)
where
W /D(a* — 2(0) [V (x) + Yy (x, %)) - V6*(x, Yelx
—k2/(n*—ns(x))u*(x)G*(x,-)dx.
D

\ J

The proof requires to quantify the fluctuations of the two-scale error.
Related work: M. Duerinckx, A. Gloria and F. Otto (2020)
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Structure of the presentation

1. Scattered wavefield in the stochastic homogenization regime

Numerical simulations

2. Speed of sound estimation
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The medium

3.5e+00
34
3.3
3.2

Figure: Mesh of the domain and realization of a;.
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Reference solution wg

e+00

Figure: Simulation of the scattered field v,
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Homogenized solution u*

e+00

Figure: Simulation of the homogenized field u*
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Error field v — u*
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Figure: Simulation of the error field ue — u*
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First-order expansion term Uy

3.4e-01
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Figure: Simulation of the approximated scattered field

22/42



Convergence rates
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Figure: Convergence rates for the norm E[|| - HLz (Br\D) ] /
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Structure of the presentation

2. Speed of sound estimation
Analysis of the point spread function in the paraxial regime
Estimation of the effective speed of sound in tissue-mimicking media
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Principle of ultrasound imaging

A Let c* be the effective speed of sound in the
medium D.

Transducer array

- For a frequency w € B, an incident wave
u'(Xe, -, w) is emitted in D from xe € A with
wave number £&.

- The scattered field ug(xe, Xr, w,) 1= ug — uis
recorded by the transducers at x, € A.

- The image at z is computed by Kirchhoff
migration with backpropagation speed c

[Ic(z) =/BXAzgfsxe,xr,w)G%(xe,z)G%(z,x,)dxedx,dw,

Simulation
of an US experiment

where G¥ is the outgoing Green's function of
Helmholtz equation with wavenumber k.
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Principle of ultrasound imaging

Let c* be the effective speed of sound in the
medium D.

- For a frequency w € B, an incident wave
u'(Xe, -, w) is emitted in D from x, € A with

wave number &,

- The scattered field uf(xe, X, w) is recorded
by the transducers at x, € A.

- The image at z is computed by Kirchhoff
migration with backpropagation speed ¢

1%(2) :/ 7 e 20, 0) ¥ (x6,2) G (2, ) el .

BxAx

Computed image [

[Goal: Estimate c* from the measurements ugs.]
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State of the art

- Full waveform inversion: C. Li, G. S. Sandhu, O. Roy, N. Duric, V.
Allada, and S. Schmidt (2014), S. Bernard, V. Monteiller, D. Komatitsch,
and P. Lasaygues (2017), L. Guasch, O. C. Agudo, M.-X. Tang, P.
Nachev, and M. Warner (2020), F. Faucher and O. Scherzer (2022)

- On the physics side

- Compounding methods (CUTE) M. Jaeger, G. Held, S. Peeters, S.
Preisser, M. Griinig, and M. Frenz (2015), Goksel (2021)

- Focusing methods Ogawa (2019), A. Aubry (2023)
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Expression of the imaging function

- We make two simplifications on the medium parameters in D:
- constant density, i.e. a;:=1,
- match between the homogenized and outer media (v* = uf), i.e.
n* =1.

- The results of the previous section give for z € D’

[IC(Z) =/D(ns(y)—n*)Fc(z.y)dy-]

where the kernel F€ : D' x D + C is defined by

[Fc(z,y)sz(%f(/A G°5(y,xr)G*(y,xr)dxr>2dW-]

F€ is the point spread function, i.e. the imaging function at z when
a point reflector lies at y.
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Structure of the presentation

1. Scattered wavefield in the stochastic homogenization regime

2. Speed of sound estimation
Analysis of the point spread function in the paraxial regime
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Paraxial asymptotic regime

- Typical values for the parameters:

- Bandwidth: B ~ [2,4] MHz,
- Speed of sound: c* ~ [1400, 1600] m-s~1

1 == \Wavelength: A ~ 1 mm
- Size of D: 5 x [10,15] cm
- Size of A:a~ 4cm.

- Size of the scatterers: &€ ~ 5um

c* .
e o < a < diam(D).

Schema of the model
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Paraxial asymptotic regime

- We consider the paraxial asymptotic regime:
- Bandwidth: B := % with
B B
) Bo := [WO—EvWO‘FE]v

- Transducers array:

1 a a _
A=n2Ag =3[ 2 7O]d .

- Scatterers: ¢ := o(7),
- Point in the paraxial regime:
1
yi= (") = 2y "),

where 17 < 1 is a small scaling parameter.

Schema of the model
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Point spread function for different backpropagation speeds

- F<(-, yo) for different backpropagation speeds ¢ = vc* and yp € D

0.15

5.1072

Z [mm]

0 5
Y [mm]

-5 0 5 -5
Y [mm]

- The shape and position of the focal spot on the image and the max
amplitude are altered by a mismatch.
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Point spread function in the paraxial regime

- For yp := (172y0 o). the focal spot on the image is centered at:

[ vet0) = ((5) rn 5) ]

Theorem : Narrowband PSF in the paraxial regime

Let 2= pc(y0) + (1} (&)% 01 n&C2) with = (01, 02) € R2,

2iw yo I = (£)|yg + Cal?
e (220 gy A= (8
Cc 2)43

sinc ( Cz) ( 0% 01, aczl,‘wo ((C*)2 = 1> )2,
yOC* Yoc* ¢

where G is the peak function defined by:

G(81.82) |A |/ EXP( iXe - §1+l| el C)dU(Xe).
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Point spread function in the paraxial regime

- For yp := (172y0 o). the focal spot on the image is centered at:

[ vet0) = ((5) rn 5) ]

Theorem : Narrowband PSF in the paraxial regime

Let 2= pc(y0) + (1} (&)% 01 n&C2) with = (01, 02) € R2,

2iw yo I = (£)|yg + Cal?
FC(Z,yo) ~exp<—*0 <€2 | 0 | (C )H| 0 |
Cc 2)43

G 22 ()Y

where G is the peak function defined by:

G(G1,62) |A I/ exp( iXe - §1+1| | C)da(xe).
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Point spread function in the paraxial regime

- For yp := (172y0 o). the focal spot on the image is centered at:

2 1
[ pc(0) = (&) ndvd. &n).- ]
Theorem : Narrowband PSF in the paraxial regime

Let 2= pc(y0) + (1} (&)% 01 n&C2) with = (01, 02) € R2,

2iw yo I = (£)|yg + Cal?
FC(Z,yo) ~exp<—*0 <€2 | 0 | (C )H| 0 |
Cc 2)43

ER IR

where G is the peak function defined by:

G(G1,62) |A I/ exp( iXe - §1+1| | C)da(xe).
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Speed of sound estimation

For a given c and yg € D, the PSF at the center of the focal spot is

F<(@c(¥0). yo) ~ g(o, ii(:g <<%>2 _ 1))?

0.8
0.6
0.4
0.2

\
1.1 ’ 0.9

0.9

1
1
1
1
1
1
1
1
E
1 11
%

LSS

(a) " i= argmax |F<(pc(y0), yo)|  (b) &) := argmax 3 S[F<(ge(¥0). yo)]

Figure: Simulation (=) & theoretical (=) estimators of the speed of sound.
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1. Scattered wavefield in the stochastic homogenization regime

2. Speed of sound estimation

Estimation of the effective speed of sound in tissue-mimicking media
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Virtual guide star

Let 5 > 0 be a given threshold and ¢ not too far from c*.

- For yg € D, we define the focal spot D;(c, yo) on the image D’ as

/ F¥(2,y0)ldz < 6 / IF€(2. y0)|dz. .
D'\Dy(c.y0) D'

Ds(c, yo) is centered at ¢c(yp).
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Virtual guide star

Let 5 > 0 be a given threshold and ¢ not too far from c*.

- For yg € D, we define the focal spot D;(c, yg) on the image D’ as

/ F<(2, y0)ldz < & / IF¥(2, yo)|dz.
D'\Ds(c,yo0) D'

Ds(c, yo) is centered at ¢c(yp).

- For zy € D’ we define the dual focal spot Di(c, zg) in the domain D as

/ F(z0.y)ldy < 6 / F<(20,y)[dy.
D\Dj(c,z0) D

Dl(c, zg) is centered at ¢ (zp).

31/42



Virtual guide star
Let 5 > 0 be a given threshold and ¢ not too far from c*.

- For yg € D, we define the focal spot D;(c, yg) on the image D’ as

/ IF¥(2,y0)ldz < 6 / IF<(2, yo)ldz.
D'\Ds(c,yo0) D'

Ds(c, yo) is centered at ¢c(yp).
- For zy € D’ we define the dual focal spot Di(c, zg) in the domain D as

/ IF<(20,y)ldy < 6 / IF<(z0,y)|dy.
D\D}(c,z0) D

Dl(c, zg) is centered at ¢_*(zp).

- For z € D', I¢(z) only depends on the scatterers in D} (c, z)

I¢(z) = /D (ne(y) — n*)F(z, y)dy ~ / (ney) — n*)F<(z, y)dy.

Dj(c,2)
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Virtual guide star

Let 6 > 0 be a given threshold and ¢ not too far from c*.

- For z € D', Z¢(z) only depends on the scatterers in D/(c, z)

T(2) = [ (nly) = m)Fe(zy)dy ~ [ (nly) =) Fe(zy)dy.

Dj(c,z)

- For a fixed zg € D', ¢ — Z(zg) probes

:
1
1
c =1.2xc* ! X
1
1
1
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Virtual guide star

Let 6 > 0 be a given threshold and ¢ not too far from c*.

- For z € D', Z¢(z) only depends on the scatterers in D/(c, z)

7(2.0) = [ (ney) =)y ~ [ () = )Pz )y

5(c.z

- For a fixed yp € D, ¢ — Z(¢c(¥0)) probes

c =1.2xc*
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Incoherent estimator

For yo € D, T(ge(y0)) ~ / (ne(y) — 1) F(9e(yo). y)dy.
Dj(c.9c(¥0))

- If we have access to multiple realizations of Z¢(¢c(y)), we compute

E [IZ°(0cto)?] ~elCllums [ IF<(ge(0), y) 2dy

5(c,pc(y0))

~ &) Clla(re) D5 9 (yo))IIF(9c (¥0). yo) |2

where C is the covariance of n, i.e. for all x € R

[ C(x) = E[n(-)n(- + x)]. ]

- We consider the following incoherent estimator

[ ¢V = argmax E [|Z°(pe(y0))/’] ]
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Local stationarity

Note that ¢°(y) = ( 77%}7 ) with y := (’7% (c)2’

Proposition : Local stationarity

For € R, t >0, let z(c ch%: ct).
ThenforaecOEQandCE]R

Z%(z(c) + ¢ @) ~ZI(z(c), T(pc_l(C)w)
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Local stationarity

Note that ¢°(y) = ( 77%}7 ) with y := (’7% (c)2’

Proposition : Local stationarity

For € R, t >0, let z(c Z2C2(: ct).
ThenforaecOGQandCE]R

Z%(z(c) + ¢ @) ~ZI(z(c), T(pc_l(C)w)

From spatial averaging to ensemble averaging

B(0, a)|/ IZ¢(2(c) + O d¢ | ~ ]E[lfc(z(c))| :|
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Numerical simulations - Emile Parolin (Alpines, Inria)

- Parameters of the simulation: 166864 scatterers, ¢ = 38.5um, A = 0.385mm,
f =4 MHz

1.0e+00
1.04

1.03
1.02

34/42



Numerical simulations - Emile Parolin (Alpines, Inria)

Figure : Partition of the domain

- Parameters of the simulation:

Discretisation: 108 DOFs (P3),

Preconditioner: one-level DD
method (ORAS) with 512
subdomains,

Solver: 164 GMRES iterations for
a 10~* residual tolerance ,

Computation time: ~ 5 min on
INRIA Paris' supercomputer.

implemented with Freefem++.
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Numerical simulations - Emile Parolin (Alpines, Inria)

1.8e-01
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0.06
0.04
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2.0e-06

Figure: |ug]
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z (mm)

Numerical simulations

-10 10
x (mm)

Figure: Speed of sound map

in a random multi-scale medium

|Z(z(c) + Az)

Figure: Plot of |Z¢(z(c) + Az)|.
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Incoherent estimator

0.8

0.6

0.4

0.2

0.8 0.9 1.1 1.2

Q HEsssssssssssssEEEw

Figure: Simulation (=) & theoretical (==) estimators of the speed of sound.

[5*(1) := argmax_[E [|I°(z(c))|2] ]
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A better coherent estimator

- Let K : L?((Cmin, €max)) — L2(Q) be the kernel operator defined by:

VF € L2((Gomims Gmac))s [KCF] (@) i= /meIC(z(c),co)f(c)dc.

Cmin

Estimator via the left singular vector of K

S := K*K is approximated by:

[Sg](c) ~ & ||C||L1 R =‘Xg(cl) / C(z(c),y)l C,(Z(C/).,V)dydcl-
(IR9)
Cmin Ds(z(c))NDs(z(c"))

for g € L?((Crmin» Cmax))-

The first eigenvector U of S can be used to recover the speed of sound.
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Numerical illustration - S

0.8 1 1.2 0.8 1 1.2
% %
(a) Plot of |S]. (b) Plot of [S].

Figure: Modulus and imaginary part of the operator S.
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Numerical illustration - a better coherent estimator

' '
0.8 ' '
' 0.5 :
0.6 ' !
0.4 : 0 ,
' :
0.2 . 1
0 | | i | | —0.5 | | ! | |
0.8 0.9 1 1.1 1.2 0.8 0.9 1 1.1 1.2
U %

(a) e argmax_|U(z(c), c)|. (b) &= argmaxdc.Im[U(z(c), c)].

Figure: Simulation (==) & theoretical (==) estimators of the speed of sound.
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Comparison with the experiment [2]

Finding ¢,

s [RPSF,
ws | RPSF_|
Iaco RP SFcoh |
— IacoIm[RPSFcoh] |

/— Experiment —\ 05l

Linear probe _

oA 0.6}

L)

0.4t
&

w 0.2

Phantom
Aixplorer / 0 M ‘
1400 1500 1600 1700
co [m/s]
Figure: Experiment done by F. Figure: Experimental estimators [2]

Bureau.

[2] F. Bureau, Multi-dimensional analysis of the reflection matrix for quantitative
ultrasound imaging, PhD thesis (2023).
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Comparison with the experiment [2]

Finding ¢,

s |RPSF.

— RPSFmc

0.8} IRPSF,
IacORPSFcohl

ol |0, Im[RPSF |

0.41

. 0.2
0 0 /4 .
0.8 0.9 1 1.1 1.2 1400 1500 1600 1700
co [m/s]

(=) : & (=) : & () : &®) Figure: Experimental estimators [2]

[2] F. Bureau, Multi-dimensional analysis of the reflection matrix for quantitative
ultrasound imaging, PhD thesis (2023).
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Conclusion and Perspectives

- Conclusion:

- We developed a new model for wave propagation in random
multi-scale media using state of the art homogenization techniques.

- This model has been used to study the estimators of the propagation
speed introduced by Aubry in the context of ultrasound imaging.

- Perspectives:
- Extend the speed of sound estimation method to
- more realistic situations starting with media with a slowly
varying effective speed of sound,

- anisotropic media with contrast both in the bulk modulus and
density.

- Characterize the scattered field in polycristalline materials like
titanium

- Construct and analyze a two-level domain decomposition method for
wave propagation in anistropic random multi-scale media [5]

[5] E. Parolin, F. Nataf (2024)
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Thank you for your attention!
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