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Sébastien Pernet1, Matthias Rivet1,2, Sébastien Tordeux2
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Context of the work

• Increasing need of 3D simulations of time-harmonic electromagnetic waves:
high-frequency, heterogeneous environments, wide domains (in terms of
wavelengths)...

Figure: FDTD simulation on a
Manhattan mesh of 700 × 600 × 300m,
Thibault Volpert (DEMR ONERA)

Example of computation challenge:
field radiated by two antennas in Manhattan

• Large simulation domain.

• Wide range of frequencies (1-18
GHz).

=⇒ Need of efficient methods to solve
such ambitious cases!
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Plan of the talk

1. 3D Maxwell: limitations and (quasi-)Trefftz method

2. Quasi-Trefftz numerical analysis

3. Information transfer optimisation
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The 3D Maxwell problem in wide domains:
current limitations and (quasi-)Trefftz method

interests
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Current issues: memory and iterative resolution

Time-harmonic Maxwell equations for the electromagnetic field
Y := (E,H) ∈ [H(curl,Ω)]6:

iκMY +
3∑

j=1

∂FjY

∂xj
= 0 in Ω, (1)

with impedance Boundary Conditions (BCs)

(n∂Ω ×E)× n∂Ω + Z∂Ω n∂Ω ×H = g on ∂Ω. (2)
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Current issues: memory and iterative resolution

Many classic methods as Finite Differences [Yee 1966], Finite Elements [Nédélec 1980],
Discontinuous Galerkin [Fezoui et al. 2005], but limitations for current applications:

• Wide domains lead to very large linear systems.

• Traditional direct solvers induce a prohibitive memory consumption.

• Usual numerical methods are not well adapted to iterative resolution.
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Figure: GMRES convergence of DG and FEM methods
[Sirdey 2022].
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Considered numerical method: the Trefftz approach

1. Belongs to the Discontinuous Galerkin methods, with the Galerkin space
X :=

∏
T∈Th

XT made up of local solutions (i.e. in each mesh cell T ∈ Th) of the

Maxwell equations.

2. Use of the reciprocity formula verified in each cell

∀ T ∈ Th,

∫
∂T

γT
×HT · γtE′T + γtE

T · γT
×H′T = 0, (3)

in addition to the introduction of numerical traces [Sirdey 2022]:

Find Y = (E,H) ∈ X such that ∀ Y′ = (E′,H′) ∈ X,∑
T∈Th

∫
∂T

γ̂T
×HT · γtE′T + γ̂tET · γT

×H′T = ℓ(E′),

where ·̂ stands for upwind (or Riemann) numerical traces and with

γtu
T = uT −

(
uT · nT

)
nT and γT

×uT = nT × uT .
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The Trefftz approach: properties and classic limits

1. The formulation is posed on the mesh skeleton and adaptable to an iterative
resolution (contraction property) [Cessenat, Després 1998].

2. A relevant choice of the numerical traces naturally implies formulation coercivity.

3. Basis functions have a physical meaning: leads to a reduced numerical pollution
[Ihlenburg, Babuška 1995].

Limits of the classic Plane Waves (PWs) choice:

• Numerical dependence phenomena:
ill-conditioned basis [Congreve et al. 2019].

• No adaptability of the basis to the local
properties: expected singularities, complex
interference phenomena...

0 100 200
10−18

10−9

100

Figure: Eigenvalues of the mass matrix for
196 PWs.

=⇒ Possible algebraic adaptations [Barucq et al. 2021].

=⇒ Introduction of well-conditioned basis by parameterising the space of local
solutions by polynomial boundary conditions.
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A Quasi-Trefftz approach

Definition of the local problem

A local solution YT in T is parameterised by a tangential field gT ∈ VT such that

γtE
T + Z∂T γT

×HT = gT on ∂T. (4)

=⇒ Consider a finite-dimensional subspace VT
h ⊂ VT and the associated Maxwell

solutions as local basis [Fure et al. 2020].

Construction of Vh:

• Consider a cell T ∈ TT
h .

• Define a mesh of T(∂T ).

• Consider a piecewise polynomial gT of
degree kQT on T(∂T ).

0

1

Figure: 2D example of the mesh of
∂T for kQT = 1.

=⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to
compute approximations!

=⇒ Other Quasi-Trefftz approaches: generalised PWs [Imbert-Gérard, Després
2013], polynomial Quasi-Trefftz functions [Imbert-Gérard, Sylvand 2023], Embedded
Trefftz DG [Lehrenfeld, Stocker 2023], BEM local solver [Barucq et al. 2017]...
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Description of the FR local solver

Choice of the local solver: the Flux Reconstruction method [Huynh 2007]

• Based on the first-order strong formulation (solves both E and H): no
dependence on a quadrature rule.

• Idea: copy the strong equation in each cell of the mesh, which is solved on
piecewise polynomials: the flux is corrected at interfaces thanks to numerical
traces and correction polynomial functions.

iκy +
dϕ

dx
= 0 with ϕ = F(y) =⇒ ∀ n ∈ J1, NK, iκyh +

dϕ̃h

dx
= 0 in [Xn−1, Xn] .

• Natural high-order method and adaptable to unstructured meshes.

• Choice of correction polynomials allows to retrieve usual methods: nodal DG (for
Radau polynomials), Spectral Differences (for Lagrange polynomials)...

• Choice of the correction polynomials to the user: possibility to optimise them for
wave propagation problems, especially in pre-asymptotic regime [Rivet, Pernet,
Tordeux 2024].

• For identical cells, the inversion has to be realised only once!

=⇒ Any numerical method, solving the first-order system, may be used!
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A quasi-Trefftz approach based on
a Flux Reconstruction auxiliary solver:

numerical analysis
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Summary of this Quasi-Trefftz approach

Variational formulation posed on X :=
∏

T∈Th

XT made up of local solutions.

Functions (ET ,HT ) of XT parameterised by gT ∈ VT such that:

γtE
T + Z∂T γT

×HT = gT on ∂T. (5)

Polynomial approximation of the trace space: VT
h = span(gT

i ).

For all i, the associated solutions (ET
i ,HT

i ) are taken as basis functions of XT .

FR auxiliary solver to compute an approximation of (ET
i ,HT

i ).
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Numerical experiments: basis quality

0 100 200
10−18
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PWs
Reduced PWs
Quasi-Trefftz

Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for ϵ = 10−6) and 192
Quasi-Trefftz basis functions.

Basis quality

=⇒ Possible reduction techniques to restore the condition number.

=⇒ Avoids spurious numerical modes and ill-conditioning of the mass matrix!
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Approximation properties of the basis for a smooth solution:
sum of random PWs
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Figure: Projection error on the different basis for a sum of random PWs.

=⇒ Saturation phenomenon due to condition number.

=⇒ Reduction techniques avoid conditioning issues, but locked convergence because
of rounding pollution error for an asked threshold.

=⇒ Robust approximation by FR basis.
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Approximation properties of the basis for a ’non-smooth’ solution:
sum of random dipoles
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Figure: Projection error on the different basis for a sum of random dipoles.

=⇒ Saturation phenomenon due to condition number: difficult representation of
complex local solutions with PWs.

=⇒ Reduction techniques avoid conditioning issues, but locked convergence because
of rounding pollution error for an asked threshold.

=⇒ Robust approximation by FR basis.
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Recovery of the Trefftz properties under local solver convergence

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?

Quasi-Trefftz properties at convergence

Hypothesis : the local solver verifies the convergence property for
γTET + Z∂T γT

×HT = gT on ∂T :

∥γt(ET −ET
h )∥L2(∂T ) + ∥γT

×(HT −HT
h )∥L2(∂T ) ≤ εTls∥g

T ∥L2(∂T ) with εTls → 0,

when the local solver mesh is refined.

If the local solver mesh is sufficiently refined, the quasi-Trefftz formulation verifies
the

• weak-coercivity,

• contraction properties,

of the original Trefftz formulation.
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Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

• Uniform Cartesian mesh TH(Ω) of the domain Ω: N macro-cells per direction.

• Uniform Cartesian mesh Th(∂T ) of ∂T : M micro-faces per direction.

• Piecewise polynomial BCs of degree kQT = 1.

N

Figure: Mesh TH(Ω) for N = 3.

0

1

M

Figure: Mesh Th(∂T ) for M = 2 and
kQT = 1.

=⇒ No theoretical a priori error estimates in L2(Ω)-norm: numerical convergence in
mesh and number of basis functions [Fure et al. 2020].
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• Uniform Cartesian mesh Th(∂T ) of ∂T : M micro-faces per direction.

• Piecewise polynomial BCs of degree kQT = 1.
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=⇒ No theoretical a priori error estimates in L2(Ω)-norm: numerical convergence in
mesh and number of basis functions [Fure et al. 2020].
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Calibration of the FR auxiliary solver (2D Helmholtz)
Is using quasi-solutions enough?

How to adapt the FR order to the Trefftz one?

=⇒ Mesh-convergence: refinement of the macro-mesh TH(Ω) for M = 2.
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Figure: Evolution of the error for 1 nano-cell per micro-face.

Influence of the local solver precision (through the number of nano-cells):
• Regime 1 (’imperfect’ local solver): quasi-optimal for kFR ≥ kQT + 2 and the

higher the order and the more refined the nano-mesh is, the later the transition.
• Regime 2 (’perfect’ local solver): common super-convergence for

kFR ≥ kQT + 1.
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Figure: Evolution of the error for 2 nano-cells per micro-face.
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Figure: Evolution of the error for 3 nano-cells per micro-face.
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Figure: Evolution of the error for 5 nano-cells per micro-face.
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Figure: Evolution of the error for 6 nano-cells per micro-face.
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Figure: Evolution of the error for 7 nano-cells per micro-face.
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Calibration of the FR auxiliary solver

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

=⇒ Mesh-convergence: refinement of the macro-mesh TH(Ω) for M = 2.
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• Need of kFR ≥ kQT + 2 for quasi-optimal orders, but no interest in
over-resolving!
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Numerical experiments: convergence in the number of basis functions

Is using quasi-solutions enough?
How to adapt the FR order to the Trefftz one?

=⇒ Local basis enrichment through refinement of the micro-mesh Th(∂T ) for
N = 2.
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• Need of kFR ≥ kQT to be sufficiently ’quasi-solution’.
• Improvement for kFR ≥ kQT + 1, but limited interest in over-resolving!
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Conclusions on the quasi-Trefftz approach

• Classic numerical schemes are not well adapted to wide domain simulations,
contrary to the Trefftz method.

• The classic choice of Plane Waves leads to limitations: we introduce a
Quasi-Trefftz approach, in which a FR solver computes approximate Maxwell
solutions associated to polynomial BCs in each cell.

• Good numerical independence properties of the basis functions.

• Robust approximation properties of the basis, even for complex local solutions.

• Numerical calibration of the local solver: kFR ≥ kQT + 2 for asymptotic
quasi-optimality, but no need to over-resolve!

• 2 convergence regimes according to the local solver resolution: as refined as
possible!
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Improvement of the transfer of information:
DtN approximation and local optimisation
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Problematic: reduce the number of iterations to convergence

Iterative solution of the linear system thanks to a Krylov method, as GMRES:
improving the information transfer would allow to reduce the number of iterations to

convergence.

(i) Solution evolution (ii) Solution modification

Figure: Iterative convergence: information propagation through iterations.
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Trefftz formulation generalisation

Principle of the proposed generalisation for the 2D Helmholtz equation:

• Introduction of the outgoing trace from a cell T (OT = iκId classically) :

γT
outy

T = −vT + OT
(
uT

)
avec vT =

κ

κT
∂nT uT .

• Consistent numerical traces û and v̂T defined from γT
outy

T and γK
outy

K .

=⇒ Need to have OT in a set of operators C which ensures the formulation
conserves classic properties (coercivity and contraction):

C ⊂ {O, there exists a definite linear operator Λ, O = iΛΛ∗ for each face} .
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Approximation of the Dirichlet-to-Neumann operator
Trefftz method can be seen as the variational formulation of

vT + OK(uT ) = −vK + OK(uK) on ∂T ∩ ∂K.

The theory of Domain Decomposition Methods (DDM) ensures the optimal operator
OT is the exterior Dirichlet-to-Neumann (DtN) one.

3 approximation types :
• Exact operator for classic outgoing waves with respect to the cell centre x0:

OT = iκd · n∂Ω (directive PWs) and OT = −κ
H

(1)
1 (κr)

H
(1)
0 (κr)

(Green kernel),

for d = (x− x0)/r and r = |x− x0|.
• Operator with same principal symbol as the classic approximation [El Bouajaji et

al. 2014]

OT = iκ

√
Id+

∆F

κ2
,

as Padé-type approximations [Després et al. 2021]

OT = iκ

(
Id−

∆F

2κ2

)−1

.

→ Face point of view: BCs for the Laplace-Beltrami operator?
• Approximation thanks to neural networks (NN): allows to enforce OT ∈ C.
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Local optimisation

Being given local parameters P , we want to optimise the operators OT and OK with
respect to an information transfer measure ρP .

κT κKZ1

Z2 Z3

Z4

Z5Z6

−→ OT OK

O
T,∗
P ,OK,∗

P = argmin
OT ,OK∈ C

ρP (OT ,OK).

Different problematics:

• Size of the local parameters P .

• Possibility to develop interpolation approximations of ρP for efficient
optimisation.

• Which measure ρP ?
• Reduce the distance of the eigenvalues to 1 (fixed point vision).
• Increase the distance of the eigenvalues to 0 (GMRES point of view).

• Does local optimisation lead to a similar behaviour at the global level?
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Preliminary results and conclusion
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Figure: GMRES convergence for different generalisations: analytic, NN-based and
optimisation-based.

• We proposed a generalisation of the Trefftz method, thanks to general numerical
fluxes keeping the original properties of the classic formulation.

• Trefftz approach can be interpreted as a DDM one: we introduced approximations
of the Dirichlet-to-Neumann operator, which is supposed to be optimal.

• Introduction of local optimisation problems for the operators, depending on the
surrounding parameters.

• Promising preliminary results to reduce the number of iterations to convergence:
about 25% reduction by using NNs.
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