A Quasi-Trefftz Method for the Iterative Solution of Time-Harmonic Wave Problems based on the Flux Reconstruction Method

Sébastien Pernet¹, <u>Matthias Rivet</u>^{1,2}, Sébastien Tordeux²

 $^1\rm DTIS$, ONERA, Université de Toulouse, 31000, Toulouse, France $^2\rm EPI$ Makutu, INRIA, Université de Pau et des Pays de l'Adour, TotalEnergies, CNRS UMR 5142

Journées Ondes du Sud-Ouest

18th March 2025

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

Context of the work

 Increasing need of 3D simulations of time-harmonic electromagnetic waves: high-frequency, heterogeneous environments, wide domains (in terms of wavelengths)...

Figure: FDTD simulation on a Manhattan mesh of $700 \times 600 \times 300$ m, Thibault Volpert (DEMR ONERA)

Example of computation challenge: field radiated by two antennas in Manhattan

- Large simulation domain.
- Wide range of frequencies (1-18 GHz).

 \implies Need of efficient methods to solve such ambitious cases!

Information transfer optimisation 00000

Plan of the talk

1. 3D Maxwell: limitations and (quasi-)Trefftz method

2. Quasi-Trefftz numerical analysis

3. Information transfer optimisation

Information transfer optimisation 00000

The 3D Maxwell problem in wide domains: current limitations and (quasi-)Trefftz method interests

Information transfer optimisation 00000

Current issues: memory and iterative resolution

Time-harmonic Maxwell equations for the electromagnetic field $\mathbf{Y} := (\mathbf{E}, \mathbf{H}) \in [\mathrm{H}(\mathrm{curl}, \Omega)]^6$:

$$i\kappa \mathbf{M}\mathbf{Y} + \sum_{j=1}^{3} \frac{\partial \mathbf{F}^{j}\mathbf{Y}}{\partial x_{j}} = \mathbf{0} \text{ in } \Omega,$$
 (1)

with impedance Boundary Conditions (BCs)

$$(\mathbf{n}_{\partial\Omega} \times \mathbf{E}) \times \mathbf{n}_{\partial\Omega} + Z_{\partial\Omega} \ \mathbf{n}_{\partial\Omega} \times \mathbf{H} = \mathbf{g} \text{ on } \partial\Omega.$$
(2)

Current issues: memory and iterative resolution

Many classic methods as Finite Differences [Yee 1966], Finite Elements [Nédélec 1980], Discontinuous Galerkin [Fezoui et al. 2005], but limitations for current applications:

- Wide domains lead to very large linear systems.
- Traditional direct solvers induce a prohibitive memory consumption.
- Usual numerical methods are not well adapted to iterative resolution.

Information transfer optimisation 00000

Current issues: memory and iterative resolution

Many classic methods as Finite Differences [Yee 1966], Finite Elements [Nédélec 1980], Discontinuous Galerkin [Fezoui et al. 2005], but limitations for current applications:

- Wide domains lead to very large linear systems.
- Traditional direct solvers induce a prohibitive memory consumption.
- Usual numerical methods are not well adapted to iterative resolution.

Figure: Memory consumption of a FEM w.r.t. the domain size (in wavelengths) [Sirdey 2022].

Current issues: memory and iterative resolution

Many classic methods as Finite Differences [Yee 1966], Finite Elements [Nédélec 1980], Discontinuous Galerkin [Fezoui et al. 2005], but limitations for current applications:

- Wide domains lead to very large linear systems.
- Traditional direct solvers induce a prohibitive memory consumption.
- Usual numerical methods are not well adapted to iterative resolution.

Considered numerical method: the Trefftz approach

- 1. Belongs to the Discontinuous Galerkin methods, with the Galerkin space $\mathbb{X} := \prod_{T \in \mathfrak{T}_h} \mathbb{X}_T$ made up of local solutions (*i.e.* in each mesh cell $T \in \mathfrak{T}_h$) of the Maxwell equations.
- 2. Use of the reciprocity formula verified in each cell

$$\forall T \in \mathfrak{I}_h, \ \int_{\partial T} \gamma_{\times}^T \mathbf{H}^T \cdot \overline{\gamma_t \mathbf{E}'^T} + \gamma_t \mathbf{E}^T \cdot \overline{\gamma_{\times}^T \mathbf{H}'^T} = 0,$$
(3)

in addition to the introduction of numerical traces [Sirdey 2022]:

Find $\mathbf{Y}=(\mathbf{E},\mathbf{H})\in\mathbb{X}$ such that $\forall~\mathbf{Y}'=(\mathbf{E}',\mathbf{H}')\in\mathbb{X}$,

$$\sum_{T \in \mathfrak{T}_h} \int_{\partial T} \widehat{\gamma_{\times}^T \mathbf{H}^T} \cdot \overline{\gamma_t \mathbf{E}'^T} + \widehat{\gamma_t \mathbf{E}^T} \cdot \overline{\gamma_{\times}^T \mathbf{H}'^T} = \ell(\mathbb{E}'),$$

where $\hat{\cdot}$ stands for upwind (or Riemann) numerical traces and with

$$\gamma_t \mathbf{u}^T = \mathbf{u}^T - \left(\mathbf{u}^T \cdot \mathbf{n}_T\right) \mathbf{n}_T \text{ and } \gamma_{\times}^T \mathbf{u}^T = \mathbf{n}_T \times \mathbf{u}^T.$$

Information transfer optimisation 00000

The Trefftz approach: properties and classic limits

- 1. The formulation is posed on the mesh skeleton and adaptable to an iterative resolution (contraction property) [Cessenat, Després 1998].
- 2. A relevant choice of the numerical traces naturally implies formulation coercivity.
- 3. Basis functions have a **physical meaning**: leads to a reduced numerical pollution [Ihlenburg, Babuška 1995].

Limits of the classic Plane Waves (PWs) choice:

- Numerical dependence phenomena: ill-conditioned basis [Congreve et al. 2019].
- No adaptability of the basis to the local properties: expected singularities, complex interference phenomena...

 \implies Possible algebraic adaptations [Barucq et al. 2021].

 \implies Introduction of well-conditioned basis by parameterising the space of local solutions by polynomial boundary conditions.

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{b}}^T$
- Define a mesh of $\mathfrak{T}(\partial T)$
- Consider a piecewise polynomial g^T of degree k_{OT} on T(∂T).

Figure: 2D example of the mesh of ∂T for $k_{QT} = 1$.

⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{h}}^T$.
- Define a mesh of $T(\partial T)$.
- Consider a piecewise polynomial g^T of degree k_{QT} on T(∂T).

Figure: 2D example of the mesh of ∂T for $k_{QT} = 1$.

⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{h}}^T$.
- Define a mesh of $\mathcal{T}(\partial T)$.
- Consider a piecewise polynomial g^T of degree k_{QT} on T(∂T).

Figure: 2D example of the mesh of ∂T for $k_{QT} = 1$.

⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{h}}^T$.
- Define a mesh of $\mathfrak{T}(\partial T)$.
- Consider a piecewise polynomial g^T of degree k_{QT} on T(∂T).

Figure: 2D example of the mesh of ∂T for $k_{QT} = 1$.

⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{h}}^{T}$.
- Define a mesh of $\mathcal{T}(\partial T)$.
- Consider a piecewise polynomial g^T of degree k_{QT} on T(∂T).

⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{h}}^T$.
- Define a mesh of $\mathfrak{T}(\partial T)$.
- Consider a piecewise polynomial g^T of degree k_{QT} on T(∂T).

Figure: 2D example of the mesh of ∂T for $k_{QT} = 1$.

⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{h}}^{T}$.
- Define a mesh of $\mathcal{T}(\partial T)$.
- Consider a piecewise polynomial g^T of degree k_{QT} on T(∂T).

⇒ Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Quasi-Trefftz numerical analysis 000000000 Information transfer optimisation 00000

A Quasi-Trefftz approach

Definition of the local problem

A local solution \mathbf{Y}^T in T is parameterised by a tangential field $g^T \in \mathbb{V}^T$ such that

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(4)

 \implies Consider a finite-dimensional subspace $\mathbb{V}_{\mathbf{h}}^T \subset \mathbb{V}^T$ and the associated Maxwell solutions as local basis [Fure et al. 2020].

Construction of \mathbb{V}_h :

- Consider a cell $T \in \mathfrak{T}_{\mathbf{h}}^{T}$.
- Define a mesh of $\mathfrak{T}(\partial T)$.
- Consider a piecewise polynomial g^T of degree k_{QT} on T(∂T).

Figure: 2D example of the mesh of ∂T for $k_{QT} = 1$.

 \implies Associated Maxwell solutions are unknown: need of an auxiliary solver to compute approximations!

Description of the FR local solver

Choice of the local solver: the Flux Reconstruction method [Huynh 2007]

- Based on the first-order strong formulation (solves both ${\bf E}$ and ${\bf H}):$ no dependence on a quadrature rule.
- Idea: copy the strong equation in each cell of the mesh, which is solved on piecewise polynomials: the flux is corrected at interfaces thanks to numerical traces and correction polynomial functions.

$$i\kappa\mathbf{y} + \frac{\mathrm{d}\phi}{\mathrm{d}x} = \mathbf{0} \text{ with } \phi = \mathcal{F}(\mathbf{y}) \implies \forall \ n \in [\![1,N]\!], \ i\kappa\mathbf{y}_h + \frac{\mathrm{d}\phi_h}{\mathrm{d}x} = \mathbf{0} \text{ in } [X_{n-1}, X_n].$$

- Natural high-order method and adaptable to unstructured meshes.
- Choice of correction polynomials allows to retrieve usual methods: nodal DG (for Radau polynomials), Spectral Differences (for Lagrange polynomials)...
- Choice of the correction polynomials to the user: possibility to optimise them for wave propagation problems, especially in pre-asymptotic regime [Rivet, Pernet, Tordeux 2024].
- For identical cells, the inversion has to be realised only once!
- \implies Any numerical method, solving the first-order system, may be used!

Information transfer optimisation 00000

A quasi-Trefftz approach based on a Flux Reconstruction auxiliary solver: numerical analysis

Information transfer optimisation 00000

Summary of this Quasi-Trefftz approach

Variational formulation posed on $\mathbb{X} := \prod_{T \in \mathcal{T}_{h}} \mathbb{X}_{T}$ made up of local solutions.

Functions $(\mathbf{E}^T, \mathbf{H}^T)$ of \mathbb{X}_T parameterised by $\mathbf{g}^T \in \mathbb{V}^T$ such that:

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(5)

✦

Polynomial approximation of the trace space: $\mathbb{V}_{\mathbf{h}}^{T} = \operatorname{span}(\mathbf{g}_{i}^{T})$. For all *i*, the associated solutions $(\mathbb{E}_{i}^{T}, \mathbf{H}_{i}^{T})$ are taken as basis functions of \mathbb{X}_{T} .

≁

FR auxiliary solver to compute an approximation of $(\mathbf{E}_i^T, \mathbf{H}_i^T)$.

Information transfer optimisation 00000

Summary of this Quasi-Trefftz approach

Variational formulation posed on $\mathbb{X} := \prod_{T \in \mathcal{T}_{h}} \mathbb{X}_{T}$ made up of local solutions.

Functions $(\mathbf{E}^T, \mathbf{H}^T)$ of \mathbb{X}_T parameterised by $\mathbf{g}^T \in \mathbb{V}^T$ such that:

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\times}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(5)

$\mathbf{1}$

Polynomial approximation of the trace space: $\mathbb{V}_{\mathbf{h}}^{T} = \operatorname{span}(\mathbf{g}_{i}^{T})$. For all *i*, the associated solutions $(\mathbf{E}_{i}^{T}, \mathbf{H}_{i}^{T})$ are taken as basis functions of \mathbb{X}_{T} .

ᢣ

FR auxiliary solver to compute an approximation of $(\mathbf{E}_i^T, \mathbf{H}_i^T)$.

Information transfer optimisation 00000

Summary of this Quasi-Trefftz approach

Variational formulation posed on $\mathbb{X} := \prod_{T \in \mathfrak{T}_b} \mathbb{X}_T$ made up of local solutions.

Functions $(\mathbf{E}^T, \mathbf{H}^T)$ of \mathbb{X}_T parameterised by $\mathbf{g}^T \in \mathbb{V}^T$ such that:

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\mathsf{X}}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(5)

≁

Polynomial approximation of the trace space: $\mathbb{V}_{\mathbf{h}}^{T} = \operatorname{span}(\mathbf{g}_{i}^{T})$. For all *i*, the associated solutions $(\mathbf{E}_{i}^{T}, \mathbf{H}_{i}^{T})$ are taken as basis functions of \mathbb{X}_{T} .

Information transfer optimisation 00000

Summary of this Quasi-Trefftz approach

Variational formulation posed on $\mathbb{X} := \prod_{T \in \mathfrak{T}_b} \mathbb{X}_T$ made up of local solutions.

Functions $(\mathbf{E}^T, \mathbf{H}^T)$ of \mathbb{X}_T parameterised by $\mathbf{g}^T \in \mathbb{V}^T$ such that:

$$\gamma_t \mathbf{E}^T + Z_{\partial T} \ \gamma_{\mathsf{X}}^T \mathbf{H}^T = \mathbf{g}^T \text{ on } \partial T.$$
(5)

≁

Polynomial approximation of the trace space: $\mathbb{V}_{\mathbf{h}}^{T} = \operatorname{span}(\mathbf{g}_{i}^{T})$. For all *i*, the associated solutions $(\mathbf{E}_{i}^{T}, \mathbf{H}_{i}^{T})$ are taken as basis functions of \mathbb{X}_{T} .

$\mathbf{1}$

FR auxiliary solver to compute an approximation of $(\mathbf{E}_i^T, \mathbf{H}_i^T)$.

Information transfer optimisation 00000

Numerical experiments: basis quality

Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for $\epsilon=10^{-6})$ and 192 Quasi-Trefftz basis functions.

Basis quality

- \implies Possible reduction techniques to restore the condition number.
- → Avoids spurious numerical modes and ill-conditioning of the mass matrix!

Information transfer optimisation 00000

Numerical experiments: basis quality

Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for $\epsilon=10^{-6})$ and 192 Quasi-Trefftz basis functions.

Basis quality

- \implies Possible **reduction techniques** to restore the condition number.
- \implies Avoids spurious numerical modes and ill-conditioning of the mass matrix!

Information transfer optimisation 00000

Numerical experiments: basis quality

Figure: Eigenvalues of the mass matrix for 196 PWs (and reduction for $\epsilon=10^{-6})$ and 192 Quasi-Trefftz basis functions.

Basis quality

- \implies Possible **reduction techniques** to restore the condition number.
- ⇒ Avoids spurious numerical modes and ill-conditioning of the mass matrix!

Information transfer optimisation 00000

Approximation properties of the basis for a smooth solution: sum of random PWs

\implies Saturation phenomenon due to condition number.

⇒ **Reduction techniques** avoid conditioning issues, but locked convergence because of rounding pollution error for an asked threshold.

Information transfer optimisation 00000

Approximation properties of the basis for a smooth solution: sum of random PWs

 \implies Saturation phenomenon due to condition number.

 \implies Reduction techniques avoid conditioning issues, but locked convergence because of rounding pollution error for an asked threshold.

⇒ Robust approximation by FR basis.

Information transfer optimisation 00000

Approximation properties of the basis for a smooth solution: sum of random PWs

 \implies Saturation phenomenon due to condition number.

 \implies Reduction techniques avoid conditioning issues, but locked convergence because of rounding pollution error for an asked threshold.

Information transfer optimisation 00000

Approximation properties of the basis for a 'non-smooth' solution: sum of random dipoles

 \implies Saturation phenomenon due to condition number: difficult representation of complex local solutions with PWs.

 \implies Reduction techniques avoid conditioning issues, but locked convergence because of rounding pollution error for an asked threshold.

Approximation properties of the basis for a 'non-smooth' solution: sum of random dipoles

 \implies Saturation phenomenon due to condition number: difficult representation of complex local solutions with PWs.

 \implies Reduction techniques avoid conditioning issues, but locked convergence because of rounding pollution error for an asked threshold.

Information transfer optimisation 00000

Approximation properties of the basis for a 'non-smooth' solution: sum of random dipoles

 \implies Saturation phenomenon due to condition number: difficult representation of complex local solutions with PWs.

⇒ **Reduction techniques** avoid conditioning issues, but locked convergence because of rounding pollution error for an asked threshold.

Information transfer optimisation 00000

Recovery of the Trefftz properties under local solver convergence

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough?

Quasi-Trefftz properties at convergence

Hypothesis : the local solver verifies the convergence property for $\gamma_T \mathbf{E}^T + Z_{\partial T} \gamma_{\times}^T \mathbf{H}^T = g^T$ on ∂T :

 $\|\gamma_t(\mathbf{E}^T - \mathbf{E}_{\mathbf{h}}^T)\|_{\mathbf{L}^2(\partial T)} + \|\gamma_{\times}^T(\mathbf{H}^T - \mathbf{H}_{\mathbf{h}}^T)\|_{\mathbf{L}^2(\partial T)} \leq \varepsilon_{ls}^T \|\mathbf{g}^T\|_{\mathbf{L}^2(\partial T)} \text{ with } \varepsilon_{ls}^T \to 0,$

when the local solver mesh is refined.

If the local solver mesh is sufficiently refined, the quasi-Trefftz formulation verifies the

- weak-coercivity,
- contraction properties,

of the original Trefftz formulation.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

- Uniform Cartesian mesh $\mathcal{T}_H(\Omega)$ of the domain Ω : N macro-cells per direction.
- Uniform Cartesian mesh $\mathfrak{T}_h(\partial T)$ of ∂T : M micro-faces per direction.
- Piecewise polynomial BCs of degree $k_{QT} = 1$.

Figure: Mesh $\mathcal{T}_H(\Omega)$ for N = 3.

Figure: Mesh $\mathfrak{T}_h(\partial T)$ for M=2 and $k_{QT}=1.$

 \implies No theoretical *a priori* error estimates in $L^2(\Omega)$ -norm: **numerical convergence in** mesh and number of basis functions [Fure et al. 2020].

Information transfer optimisation 00000

Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

- Uniform Cartesian mesh $\mathcal{T}_H(\Omega)$ of the domain Ω : N macro-cells per direction.
- Uniform Cartesian mesh $\mathfrak{T}_h(\partial T)$ of ∂T : *M* micro-faces per direction.
- Piecewise polynomial BCs of degree $k_{QT} = 1$.

Figure: Mesh $\mathcal{T}_H(\Omega)$ for N = 3.

Figure: Mesh $\mathcal{T}_h(\partial T)$ for M = 2 and $k_{QT} = 1$.

 \implies No theoretical *a priori* error estimates in $L^2(\Omega)$ -norm: **numerical convergence in** mesh and number of basis functions [Fure et al. 2020].

Information transfer optimisation 00000

Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

- Uniform Cartesian mesh $\mathfrak{T}_H(\Omega)$ of the domain Ω : N macro-cells per direction.
- Uniform Cartesian mesh $\mathfrak{T}_h(\partial T)$ of ∂T : M micro-faces per direction.
- Piecewise polynomial BCs of degree $k_{QT} = 1$.

Figure: Mesh $\mathcal{T}_H(\Omega)$ for N = 3.

Figure: Mesh $\mathcal{T}_h(\partial T)$ for M = 2 and $k_{QT} = 1$.

 \implies No theoretical *a priori* error estimates in $L^2(\Omega)$ -norm: **numerical convergence in mesh and number of basis functions** [Fure et al. 2020].

Information transfer optimisation 00000

Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

- Uniform Cartesian mesh $\mathcal{T}_H(\Omega)$ of the domain Ω : N macro-cells per direction.
- Uniform Cartesian mesh $\mathfrak{T}_h(\partial T)$ of ∂T : M micro-faces per direction.
- Piecewise polynomial BCs of degree $k_{QT} = 1$.

Figure: Mesh $\mathcal{T}_H(\Omega)$ for N = 3.

Figure: Mesh $\mathcal{T}_h(\partial T)$ for M = 2 and $k_{QT} = 1$.

 \implies No theoretical *a priori* error estimates in $L^2(\Omega)$ -norm: **numerical convergence in mesh and number of basis functions** [Fure et al. 2020].

Information transfer optimisation 00000

Calibration of the FR auxiliary solver

Trefftz approach rests on the use of exact solutions of the Maxwell equations:

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

- Uniform Cartesian mesh $\mathcal{T}_H(\Omega)$ of the domain Ω : N macro-cells per direction.
- Uniform Cartesian mesh $\mathfrak{T}_h(\partial T)$ of ∂T : M micro-faces per direction.
- Piecewise polynomial BCs of degree $k_{QT} = 1$.

Figure: Mesh $\mathcal{T}_H(\Omega)$ for N = 3.

Figure: Mesh $\mathcal{T}_h(\partial T)$ for M = 2 and $k_{QT} = 1$.

 \implies No theoretical *a priori* error estimates in $L^2(\Omega)$ -norm: numerical convergence in mesh and number of basis functions [Fure et al. 2020].

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver (2D Helmholtz)

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathfrak{T}_H(\Omega)$ for M=2.

- Regime 1 ('imperfect' local solver): quasi-optimal for $k_{FR} \ge k_{QT} + 2$ and the higher the order and the more refined the nano-mesh is, the later the transition.
- Regime 2 ('perfect' local solver): common super-convergence for $k_{FR} \ge k_{QT} + 1$.

Information transfer optimisation 00000

Calibration of the FR auxiliary solver

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Mesh-convergence: refinement of the macro-mesh $\mathcal{T}_H(\Omega)$ for M = 2.

• Need of $k_{FR} \ge k_{QT} + 2$ for quasi-optimal orders, but no interest in over-resolving!

Information transfer optimisation 00000

Numerical experiments: convergence in the number of basis functions

Is using quasi-solutions enough? How to adapt the FR order to the Trefftz one?

 \implies Local basis enrichment through refinement of the micro-mesh $\Im_h(\partial T)$ for N=2.

• Need of $k_{FR} \ge k_{QT}$ to be sufficiently 'quasi-solution'.

• Improvement for $k_{FR} \ge k_{QT} + 1$, but limited interest in over-resolving!

Conclusions on the quasi-Trefftz approach

- Classic numerical schemes are not well adapted to wide domain simulations, contrary to the Trefftz method.
- The classic choice of **Plane Waves** leads to limitations: we introduce a **Quasi-Trefftz approach**, in which a FR solver computes approximate Maxwell solutions associated to polynomial BCs in each cell.
- Good numerical independence properties of the basis functions.
- Robust approximation properties of the basis, even for complex local solutions.
- Numerical calibration of the local solver: $k_{FR} \ge k_{QT} + 2$ for asymptotic quasi-optimality, but no need to over-resolve!
- 2 convergence regimes according to the local solver resolution: as refined as possible!

Information transfer optimisation 00000

Improvement of the transfer of information: DtN approximation and local optimisation

Information transfer optimisation •0000

Problematic: reduce the number of iterations to convergence

Iterative solution of the linear system thanks to a Krylov method, as GMRES: improving the information transfer would allow to reduce the number of iterations to convergence.

> (i) Solution evolution (ii) Solution modification Figure: Iterative convergence: information propagation through iterations.

Trefftz formulation generalisation

Principle of the proposed generalisation for the 2D Helmholtz equation:

• Introduction of the outgoing trace from a cell T ($0^T = i\kappa Id$ classically) :

$$\gamma_{out}^{T} \mathbf{y}^{T} = -v^{T} + \mathbf{O}^{T} \left(u^{T} \right) \quad \text{avec} \quad v^{T} = \frac{\kappa}{\kappa_{T}} \partial_{\mathbf{n}_{T}} u^{T}.$$

• Consistent numerical traces \hat{u} and $\hat{v^T}$ defined from $\gamma_{out}^T \mathbf{y}^T$ and $\gamma_{out}^K \mathbf{y}^K$.

 \implies Need to have O^T in a set of operators C which ensures the formulation conserves classic properties (coercivity and contraction):

 $\mathcal{C} \subset \{\mathcal{O}, \text{ there exists a definite linear operator } \Lambda, \ \mathcal{O} = i\Lambda\Lambda^* \text{ for each face}\}.$

Information transfer optimisation 00000

Approximation of the Dirichlet-to-Neumann operator

Trefftz method can be seen as the variational formulation of

$$v^T + \mathbb{O}^K(u^T) = -v^K + \mathbb{O}^K(u^K) \quad \text{on} \quad \partial T \cap \partial K.$$

The theory of Domain Decomposition Methods (DDM) ensures the **optimal** operator O^T is the **exterior Dirichlet-to-Neumann** (DtN) one.

3 approximation types :

• Exact operator for classic outgoing waves with respect to the cell centre x₀:

$$\mathbb{O}^T = i\kappa \mathbf{d} \cdot \mathbf{n}_{\partial\Omega} \text{ (directive PWs)} \text{ and } \mathbb{O}^T = -\kappa \frac{\mathrm{H}_1^{(1)}(\kappa r)}{\mathrm{H}_0^{(1)}(\kappa r)} \text{ (Green kernel)},$$

for $\mathbf{d} = (\mathbf{x} - \mathbf{x}_0)/r$ and $r = |\mathbf{x} - \mathbf{x}_0|$.

 Operator with same principal symbol as the classic approximation [El Bouajaji et al. 2014]

$$\mathbb{O}^T = i\kappa \sqrt{Id + \frac{\Delta_F}{\kappa^2}},$$

as Padé-type approximations [Després et al. 2021]

$$\mathcal{O}^T = i\kappa \left(Id - \frac{\Delta_F}{2\kappa^2} \right)^{-1}$$

 \rightarrow Face point of view: BCs for the Laplace-Beltrami operator?

• Approximation thanks to neural networks (NN): allows to enforce $\mathbb{O}^T \in \mathbb{C}$.

Information transfer optimisation 00000

Local optimisation

Being given local parameters P, we want to optimise the operators \mathcal{O}^T and \mathcal{O}^K with respect to an information transfer measure ρ_P .

$$Z_{1} \begin{array}{c|c} Z_{6} & Z_{5} \\ \hline \kappa_{T} & \kappa_{K} \\ \hline Z_{2} & Z_{3} \end{array} \xrightarrow{} \mathcal{O}^{T} \xrightarrow{} \mathcal{O}^{K}$$

$$\mathcal{O}_{P}^{T,*}, \mathcal{O}_{P}^{K,*} = \underset{\mathcal{O}^{T}, \mathcal{O}^{K} \in \mathcal{C}}{\operatorname{argmin}} \rho_{P}(\mathcal{O}^{T}, \mathcal{O}^{K}).$$

Different problematics:

- Size of the local parameters *P*.
- Possibility to develop interpolation approximations of ρ_P for efficient optimisation.
- Which measure ρ_P ?
 - Reduce the distance of the eigenvalues to 1 (fixed point vision).
 - Increase the distance of the eigenvalues to 0 (GMRES point of view).
- Does local optimisation lead to a similar behaviour at the global level?

Information transfer optimisation 00000 \bullet

Preliminary results and conclusion

Figure: GMRES convergence for different generalisations: analytic, NN-based and optimisation-based.

- We proposed a generalisation of the Trefftz method, thanks to general numerical fluxes keeping the original properties of the classic formulation.
- Trefftz approach can be interpreted as a DDM one: we introduced approximations of the Dirichlet-to-Neumann operator, which is supposed to be optimal.
- Introduction of local optimisation problems for the operators, depending on the surrounding parameters.
- Promising preliminary results to reduce the number of iterations to convergence: about 25% reduction by using NNs.

Information transfer optimisation 00000

Bibliography

[Sirdey 2022] M. Sirdey. 'Méthode itérative de Trefftz pour la simulation d'ondes électromagnétiques en trois dimensions', PHD, Université de Pau et des Pays de l'Adour, 2022.

[Yee 1966] Kane Yee. 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media', IEEE Transactions on Antennas and Propagation, 14(3):302–307, 1966.

[Nédélec 1980] J. C. Nedelec, 'Mixed finite elements in \mathbb{R}^{3} ', Numer. Math., vol. 35, no. 3, pp. 315–341, 1980.

[Fezoui et al. 2005] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, 'Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes', ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, vol. 39, no. 6, pp. 1149–1176, 2005.

[Cessenat, Després 1998] O. Cessenat, B. Després. 'Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem', SIAM Journal on Numerical Analysis, vol. 35, pp. 255-299, 1998.

[Ihlenburg, Babuška 1995] F. Ihlenburg, I. Babuška. 'Finite element solution of the Helmholtz equation with high wave number Part I : The h-version of the FEM', Computers & Mathematics with Applications, vol. 30, pp. 9-37, 1995.

Information transfer optimisation 00000

- [Congreve et al. 2019] S. Congreve, J. Gedicke, I. Perugia. 'Numerical Investigation of the Conditioning for Plane Wave Discontinuous Galerkin Methods', in Numerical Mathematics and Advanced Applications ENUMATH 2017, pp. 493-500, 2019, Springer, Cham.

[Barucq et al. 2021] H. Barucq, A. Bendali, J. Diaz, and S. Tordeux, 'Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation', Journal of Computational Physics, vol. 441, p. 110449, 2021.

[Fure et al. 2020] H. Fure, S. Pernet, M. Sirdey, S. Tordeux, 'A discontinuous Galerkin Trefftz type method for solving the two dimensional Maxwell equations', SN Partial Differential Equations and Applications, vol. 1, pp. 1-25, 2020.

[Imbert-Gérard, Després 2013] L.-M. Imbert-Gérard, B. Després. 'A generalized plane wave numerical method for smooth non constant coefficients'. IMA Journal of Numerical Analysis 34, 2024.

[Imbert-Gérard, Sylvand 2023] L.-M. Imbert-Gérard, G. Sylvand. 'Three types of quasi-Trefftz functions for the 3D convected Helmholtz equation: construction and approximation properties'. arXiv preprint, 2023.

[Lehrenfeld, Stocker 2023] C. Lehrenfeld and P. Stocker, 'Embedded Trefftz discontinuous Galerkin methods', International Journal for Numerical Methods in Engineering, vol. 124, no. 17, pp. 3637–3661, 2023.

[Barucq et al. 2017] H. Barucq, A. Bendali, M. Fares, V. Mattesi and S. Tordeux, 'A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation'. Journal of Computational Physics, Vol. 330, pp. 1069-92, 2017.

[Huynh 2007] H.T. Huynh, 'A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods'. AIAA Paper 2007-4079, pp. 1-42, 2007.

[Rivet et al. 2023] M. Rivet, S. Pernet, S. Tordeux, 'Flux reconstruction method for time-harmonic linear propagation problems: 1D a priori error analysis'. HAL preprint, 2023.

[Rivet et al. 2024] M. Rivet, S. Pernet, S. Tordeux, 'Optimised Correction Polynomial Functions for the Flux Reconstruction Method in Time-Harmonic Electromagnetism'. Applied Mathematics Letters, 2024.

[El Bouajaji et al. 2014] M. El Bouajaji, X. Antoine, C. Geuzaine, 'Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equationsm'. Journal of Computational Physics, 2014.

[Després et al. 2021] B. Després, A. Nicolopoulos, B. Thierry, 'Corners and stable optimized domain decomposition methods for the Helmholtz problem'. Numerische Mathematik, 2021.