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Motivations

Introduction to helioseismology

Helioseismology reconstructs the subsurface structures
and dynamics of the Sun from oscillations observed in
the visible layer of the photosphere.

SDO/HMI. Credit: NASA/SDO
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Helioseismic observables

Filtered HMI power spectrum of
Doppler velocity Py(w) showing
standing acoustic oscillations

Frequency [mHz]
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Credit: SDO/NASA
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Motivations

Helioseismic observables

Filtered HMI power spectrum of
Doppler velocity Py(w) showing
standing acoustic oscillations

Frequency [mHz]

Lola Chabat

100 150 200
Harmonic degree

Credit: SDO/NASA

Synthetic observables

‘ E[P;(w)] ~ImG (convenient source assumption.)

G is Green kernel to a wave equation

(-o? - L) G = §(x - y).

General objectives

Taking into account effect of the perturbation of gravity on
acoustic oscillations :

e Compute G with £ using accurate and robust numerical
methods.

e Create an eigensolver to model the eigenvalues.

March 19, 2025 5/34
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Equations and general question

Time-harmonic solar wave equation in Eulerian-Lagragian description

Denote by{ & = small Lagrangian displacement } on top of a stationary self-gravitating

04 = perturbation to gravitational potential adiabatic background without flow

Full equation

(&, 0y) satisfies the time-harmonic Galbrun’s
equation without rotation and flow.

{—pofﬂg — L& + pVdy = F,

The interior of the Sun is characterized by :
Ady = —4nGV - (pok) .

v/ pressure pg, v adiabatic index y
L=V(ypoVx- &) = (Ypo) (Vs - &) + V[(£ - V)pol v/ density py, vV gravitz.ztio.nal potential
(£ — po (£ V) V. o satisfying

Ado =4nGpy, ¢o — 0, |x| = 0.

Lynden-Bell, D., & Ostriker, J. P. (1967).
On the stability of differentially rotating bodies

Monthly Notices of the Royal Astronomical Society, 136(3) ~ _
Lola Chabat =’ . . March 19, 2025 7/34



Equations and general question

Time-harmonic solar wave equation in Eulerian-Lagragian description

Denote b & = small Lagrangian displacement on top of a stationary self-gravitating
4 04 = perturbation to gravitational potential adiabatic background without flow
Full equation Cowling approximation
(&, 0y) satisfies the time-harmonic Galbrun’s Ignoring perturbation to gravitational potential d,

equation without rotation and flow.
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Denote b & = small Lagrangian displacement on top of a stationary self-gravitating
enote by 04 = perturbation to gravitational potential adiabatic background without flow
Full equation Cowling approximation
(&, &4) satisfies the time-harmonic Galbrun’s Ignoring perturbation to gravitational potential d,

equation without rotation and flow.

—poo’E — L& = F.
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ASy = —41GYV - (poF)).

What is the effect of Cowling
approximation on Green’s kernel
and position of eigenvalues ?
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Equations and general question

Time-harmonic solar wave equation in Eulerian-Lagragian description

Denote b & = small Lagrangian displacement on top of a stationary self-gravitating
enote by 04 = perturbation to gravitational potential adiabatic background without flow
Full equation Cowling approximation
(&, &4) satisfies the time-harmonic Galbrun’s Ignoring perturbation to gravitational potential d,

equation without rotation and flow.

—poo’E — L& = F.

{—‘D(]O'Zg = LE + poVSd, = F,
ASy = —41GYV - (poF)).

Background parameters in Standard Solar
Models are radially symmetric.

What is the effect of Cowling
approximation on Green’s kernel
and position of eigenvalues ?

Lola Chabat B B March 19, 2025 8/34
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PART | : Wave solver - Resolution in radial symmetry

Boundary value problems (BVP)

We denote Bg := {|x| < Rs}, Rs = height at the end of solar model S.

BVP 1

(o2 -7
(0 + L)g+Vdy = —, onBs,

Po

5

—4nGV - (po€), onBg
A5¢ = .
0, on R”\ Bg

&E-n=0, at x € dBs, (%)
[6] = [9ndg] =0, asx € dBs,
oy — 0, asx — 0.

BVP 2

F
—(02+£) +Véy = —, onDBg,
¢ Po

5

—4nGV - (po€), onBg
A5¢ = 5

0, on R’ \ Bg
op =0, at x € dBs, (%)
[6g] =0, [0n0y] =—4m Gpy&-n, asx € IBs,

oy — 0, as X — 0.

BC (%) and (%)
e employ for eigenvalue investigation, cf. Gyre ,
ADIPLS.

o below cut-off frequency (5.3 mHz).

Lola Chabat B B

0p : the perturbation to pressure

8p=—E-Vpo = pogV - E.

March 19, 2025 10/34



PART | : Wave solver - Resolution in radial symmetry

Boundary value problems

BVP 1 BVP 2
2 F 2 F
—(0°+ L)E+Véy, = —, onBs, —(0°+ L)§+Vdy, = —, onBs,
Po Po
—47GV - , onDB —4xGV - , onDB
NSy = (/;o‘s') S ’ AG = (f;oﬁ) s (%)
0, on R’ \ Bg 0, on R”\ Bs
E-n=0, at x € 9B, 6,=0, at x € 9B,
[64] = [9n64] =0, asx € dBs, [0g] =0, [0ndp] =—-4mGpy&-n, asx € dBs, (**)
oy — 0, as x — oo, dy — 0, as X — 0o,

o

o Well-posedness of BVP 1 is investigated in,

Halla, M., & Hohage, T. (2021). On the well-posedness of the damped
@ time-harmonic Galbrun equation and the equations of stellar oscillations
SIAM Journal on Mathematical Analysis, 53(4), 4068-4095

Lola Chabat B B

o (*) & (xx) also employed to describe oscillations in
a self-gravitating Earth,

Geophysical Journal International.
Gharti, H., & Eaton, W., & Tromp, J. (2023). Spectral-infinite-element

@ Chaljub, E., & Valette, B. (2004). Spectral element modelling of
simulations of seismic wave propagation in self-gravitating, rotating 3D
Earth models.

three-dimensional wave propagation in a self-gravitating Earth with an
arbitrarily stratified outer core.
Geophysical Journal International.

March 19, 2025
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Resolution in radially symmetric background

Expansion of unknowns in Vector spherical harmonics

0 3

00 5 oo £
£=), D, 4 PPE + ) )1 b BYR) + () CT(R), ‘ 8p= D > () Y.
=0 m=—¢ =1 m=—¢ =0 m=—¢
Similar for F with (f;, g, he).
Vector spherical harmonics (VSH)
An orthonormal basis for [%2(R?)3 PPR) =Y (R) e, £=0,1,...;
vectors defined in terms of
m m
the scalar spherical harmonics Y;"  BI'(x) = Vg2 Y7 CM(R) = _M’ (=12 .

and tangential gradient Vg2, Ve +1) V(e +1)

Lola Chabat - - March 19, 2025 12/34



PART | : Wave solver - Resolution in radial symmetry

Resolution in radial symmetry - Modal equations

Complete model
—(0’po+ L)E + Vs =F,
{ Ady = —4nGV - (pok) .
Coefficients of unknowns and RHS

Eo (a,b],c"), O d

F o (f787 h)

fr depends on f;, g,, g¢ is a multiple of g.

Lola Chabat B B March 19, 2025 13/34
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Resolution in radial symmetry - Modal equations

Complete model (a.dp), (frge) | = be
etermines
—(c’po+ L)E + Vi, =F, he A
multiple o
NSy =—4nGV - (pok) .

Coefficients of unknowns and RHS
Eo (a,b],c"), O d

F o (f787 h)

fr depends on f;, g,, g¢ is a multiple of g.
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PART | : Wave solver - Resolution in radial symmetry

Resolution in radial symmetry - Modal equations

Complete model (ar, dp) ) (for &) o by,
etermines
—(O'zpo +L)E + V5¢ =F, he [0.—>| fc[
multiple o
NSy = —47GYV - (pof) .

Coefficients of unknowns and RHS

Qe 02+ qr 0, + G a+(Q3+é)d =T
. (e 07 +qr 0: + Gr) ar 4 b= o (a b)), 65 o df

(rzaf +2ro, + i) dp + (Pra, + 7’) ap =g . Fo (fm 8" h)

fr depends on f;, g,, g¢ is a multiple of g.

Lola Chabat B B March 19, 2025 13/34



PART | : Wave solver - Resolution in radial symmetry

Resolution in radial symmetry - Modal equations

(ap, dp) , (fe. &) = by,

determines

h[ Ld Cr
multiple of

. Coefficients of unknowns and RHS
(9 2+ qedr +Gr) ar + (Q3r+ Q) dp = e,

N Eo (a,b],c"), O d
(r*32 + 2ro, + fing) d; + (Pra, - f’) a=g;. F o (Fm gm h™)
fr depends on f;, g,, g¢ is a multiple of g. NB : system rational in o?.

Lola Chabat B B March 19, 2025 13/34



PART | : Wave solver - Resolution in radial symmetry

Resolution in radial symmetry - Modal equations

Complete model Cowling approximation
—(c’po+ L)E + VS5 =F, —(c’po+ LYE=F
{ Ady = 4GV - (po§) . = (a[af +Gedr + Go)ae = To. J
_ (af 93 e (NJ(’) a + (Q&, + é) de = fe, With attenuation (Im o > 0)
(r?0% + 2rd, + fing) dp + (Pra, + i’) ar =g . o coefficients are continuous on r > 0,
o the ODEs have regular singularities at
fo depends on f;, g, a¢ is a multiple of g;. r=0.

Lola Chabat B B March 19, 2025 14/34



PART | : Wave solver - Resolution in radial symmetry

Singular regular boundary conditions at r = 0

e Equations in 3D have no singularity at the origin x = 0.

e Due to the singularity of the spherical coordinates, the modal equations have regular
singularitiesat r=0.

Regular indicial boundary condition at r = 0 chooses non-singular solution :

/7
ra, =0,
at r=0.
’
I’d( - fd[ =0
@ Barucq, H., Faucher, F., Fournier, D., Gizon, L., & Pham, H. (2021).
Outgoing modal solutions for Galbrun’s equation in helioseismology
Journal of Differential Equation
Unno, W., Osaki, Y., Ando, H., & Shibahashi, H. (1979)).
Nonradial oscillations of stars.
Tokyo: University of Tokyo Press.
Lola Chabat - - March 19, 2025
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Boundary conditions for rp and rmayx

I'min rp

Boundary condition for g, : BC a

We employ a free-surface or a Dirichlet condition at r = r, for a; :

ra, + (-2 + aT’:"r)ag =0 & 6, =0 (free-surface) or a =0 & £&-n=0(Dirichlet) .

Lola Chabat - - March 19, 2025 16/34



PART | : Wave solver - Resolution in radial symmetry

Boundary conditions for rp and rmayx

I'min rp

Boundary condition for g, : BC a

We employ a free-surface or a Dirichlet condition at r = r, for a; :

ra, + (-2 + aT’:"r)ag =0 & 6, =0 (free-surface) or a =0 & £&-n=0(Dirichlet) .

I'min I'p I'max

) BC ay BC d[

Boundary condition for d; :

We employ a DtN condition at r = ryax for dp :

rd, + (£+1)dp=0 ON I = I'max > Ib.

Lola Chabat - - March 19, 2025 16/34



PART | : Wave solver - Resolution in radial symmetry

Question under consideration

What is the effect of Cowling approximation on Green’s kernel
and position of eigenvalues ?

Computational framewok
@ Solve our problem using HDG code and CG code.
@ Implement correct boundary conditions specifically for 4 to truncate the Poisson equation.

@ Numerical implementations in Hawen software (https://ffaucher.gitlab.io/hawen-website/).

. . —4
Technical problem : Model S for solar . 10
parameters.

=
@
iy

S N e O

Both density and wave-speed exponentially
decrease near surface layer.

J
?
I

\ \ !
0.25 0.5 0.75
Density.

© [T I TR T T T

1

0.5
Wave-speed.

Lola Chabat - - March 19, 2025 17/34



PART | : Wave solver - Resolution in radial symmetry

Working equations
Normalized problem

(r 62+( +1)r8, qe)a[+(3r6,+ Ag)dgzw on [0, rp]; and
qe qe qe qe

P p
(r 32+(—+1)ra et )d[ (A—ra,+7)a[:0 on [0, rp]
m me

¢
(r32+(—+1)a+ )d[:() on [rp, fmax |
with BC
eatr=0 e at r, =1.001 ® at rmax
ra, = 0; o _surf: ’ _
) regular ¢ a=0 or ra}+(2 _ 9 r) 4 =0 zero-surface rd, + (£+1)d,=0
singular BC rdy — £dy = 0. Y pressure
exact DtN.
& Adapted Jump condition
18/34

Lola Chabat B B March 19, 2025
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A few words about the HDG method

Discretization with Hybrizable Discontinuous Galerkin method
@ Based on two different problems: a global and a local one.

@ Static condensation for first-order problems without increasing the number of unknowns: the
unknowns of the global matrix are only the numerical traces 1, and 14

@ Adapted to complex geometry (p-adaptivity)

@ Resolution of a reduced system

e o o o o o o ...:ooo Ue_;xx; ¢ A
— — —
X X X X Ue+

Illustration of the degrees of freedom in one dimensions for polynomial order 3 - From left to righ : CG, DG and HDG method.

Lola Chabat - - March 19, 2025 19/34
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Construction of the HDG method

e 1st order formulation : unknowns Uy, = (ap, raj, , dp, rd; )T and numerical traces A = (14 Aq)"

S~ S~
Vh Wh

Lola Chabat B B March 19, 2025 20/34



PART | : Wave solver - Resolution in radial symmetry

Construction of the HDG method

e 1st order formulation : unknowns Uy, = (ap, raj, , dp, rd; )T and numerical traces A = (14 Aq)"

S~—— S~
Vh Wh

Discretized HDG formulation :
B U®+ C°R.A =F° Local problem on each cell

Find ((Ue)lsesm‘,/\) that solve :
\7]

Z RT(D“’ U¢ + LER A) —0o Relation for
e

numerical traces

Lola Chabat B B March 19, 2025 20/34



PART | : Wave solver - Resolution in radial symmetry

Construction of the HDG method

e 1st order formulation : unknowns Uy, = (ap, raj, , dp, rd; )T and numerical traces A = (14 Aq)"

S~—— S~
Vh Wh

Discretized HDG formulation :
B U®+ C°R.A =F° Local problem on each cell

Find ((Ue)1ge5|7;,\,/\) that solve :
\7]

Z RT(D“’ U¢ + LER A) —0o Relation for
e

numerical traces

e Solve the large linear system Z ReT(Le - ]DeIB%glCe)ReA =- Z ‘ReTBeD;TFe.
e

e
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PART | : Wave solver - Resolution in radial symmetry

Construction of the HDG method

e 1st order formulation : unknowns Uy, = (ap, raj, , dp, rd; )T and numerical traces A = (14 Aq)"

S~—— S~
Vh Wh

Discretized HDG formulation :
B U®+ C°R.A =F° Local problem on each cell

Find ((Ue)1ge5|7;,\,/\) that solve :
\7]

Z RT(D“’ UC + L°R A) —0 Relation for
e

numerical traces

e Solve the large linear system Z ReT(Le - DeBglCe)ReA =- Z ‘ReTBeD;TFe.
e

e

o Solve the local linear sytem to obtain the volumic solutions (ap, d)

Lola Chabat - - March 19, 2025 20/34



PART | : Wave solver - Resolution in radial symmetry

Construction of the HDG method

e 1st order formulation : unknowns Uy, = (ap, raj, , dp, rd; )T and numerical traces A = (14 Aq)"

S~—— S~
Vh Wh

Discretized HDG formulation :
B U®+ C°R.A =F° Local problem on each cell

Find ((Ue)1ge5|7;,\,/\) that solve :
\7]

Z RT(D“’ U¢ + LER A) —0o Relation for
e

numerical traces

* Essence of the HDG method : the formulation of the numerical fluxes

7 = vlge) + Ta(a;’e) - 249 nf(e) and w9 = Wf(,e) + Td(di(,e) - A((f)) nf(e), (1)

Lola Chabat - - March 19, 2025 20/34



PART | : Wave solver - Resolution in radial symmetry

Result 1: HDG method and choice of the stabilization parameter

Comparisons of d; with two different choices of penalization with r, = 1.001 and r.x = 1.100. Mode
£ =1- Frequency 2 Mhz.

1071 1071
T T
0 e 0
< | <
Penalization 1 - rmax = 1.10 ‘ Penalization 2 - rmax = 1.10
_5 | | -5 4
| | | | | 1 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 . 0.6 0.8 1
,
Choice 1: 7, =14 = 1.0 Choice2: 1, =—r (3(’,/3[ — V-V, n) :
== nr), (t=0)

ty=1—-+t(t+N)n, (£>0).

Remark : Choice 17, = 1.0 is adapted for the case with Cowling’s approximation.

Lola Chabat - - March 19, 2025 21/34



PART | : Wave solver - Resolution in radial symmetry

Result 2 : Comparison HDG and CG method

Parameters : rmin =0, r, = 1.001 and rpax = 1.100.

Comparisons are carried out between the
two meshes :

© Mesh 1: 2 step sizes, h; = 2¢ — 04 and

leb
h2 =le—04
I'min rp I'max
BC a BC 4, ¢!
@ Mesh 2: starts from Mesh 1 with
refinement around rp, h3 = Te — 07 le-4 \ \ \
I'min rp Imax 0 0.25 0.5 0.75 1

BC a BC d[ Density.

Lola Chabat B B March 19, 2025 22/34



PART | : Wave solver - Resolution in radial symmetry

Numerical result 2: Comparison HDG vs CG method

[ [ HDG ] CG [ HDG + CG

BVP 1 [64] = [0:84] = 0(= 47Gpo& - n),a; = 0. Agreement [ Agreement [ M1upG = M2upg = M1cg = M2¢g

BVP 2 [64] =0; [3:0p] =4nGpo & - n, e = 0.

1077

—— Mesh 1 CG —— Mesh 1 HDG
I'min Ip I'max -— MeSh 2 CG """"" MeSh 2 HDG

T T
=0 dy DtN 0 0.2 0.4 0.6 0.8

Solution a;(r, s) with Dirac source at s=Tand £ = 2,
w/2r =5 mHz.

Lola Chabat B B March 19, 2025 23/34
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Numerical result 2: Comparison HDG vs CG method

[ [ HDG ] CG [ HDG + CG
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e HDG is robust.

e CG need a more refined around r = rp,
where the jump condition different to
zero is imposed.
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PART | : Wave solver - Resolution in radial symmetry

Numerical result 2: Comparison HDG vs CG method

[ [ HDG ] CG [ HDG + CG
BVP 1 [64] = [0:84] = 0(= 47Gpo& - n),a; = 0. Agreement Agreement M1upG = M2upg = M1cg = M2¢g
BVP 2 [64] =0; [3:0p] =4nGpo & - n, e = 0. Agreement | No agreement | M1ypg = M2Hpg = M2cg # Micg

e HDG is robust.

e CG need a more refined around r = rp,
where the jump condition different to
zero is imposed.

I'min Ip

8,=0

rmax

dp DtN

Lola Chabat B

1077

—— Mesh 1 CG — Mesh 1 HDG

--- Mesh 2 CG

Mesh 2 HDG

0

I I
0.2 0.6 0.8

Solution a;(r, s) with Dirac source at s=Tand £ = 2,

March

w/2r =5 mHz.

19, 2025 23/34



PART | : Wave solver - Resolution in radial symmetry

Application : Effect of Cowling’s approximation

Superposition of a,(1, 1; w) with and without Cowling’s approximation.

) ‘—\vith Cowling approximation - without Cowling approximation
: T T

‘—With Cowling approximation = without Cowling approximation
T :

10°

lac(1, 1)

-3 L 1 L -3 L L )
107 2.5 25 275 3 1079 2.25 25 275 3
frequency (mHz) frequency (mHz)

£=1. £ =5.

Existence of a shift with Cowling approximation predominant at low mode.

T. P. Larson and J. Schou Analysis of Medium-f Data from the Michelson Doppler Imager

Michelson Doppler Imager, Solar Physics, 290 (2015), pp. 3221-3256
Crpichelson Doppler Imager, Solar Physics, 290 (2015), pp. 3221-3 March 19, 2025 24/34



PART Il : Spectral solver - Resolution in radial symmetry

Table of Contents

@ PART Il : Spectral solver - Resolution in radial symmetry

Lola Chabat B B March 19, 2025



PART Il : Spectral solver - Resolution in radial symmetry

Alternative to obtain the system of equations

Unknowns: & =¢e +&, Oy

—(Ppo+ L)E + Véy =F,
NSy = —4nGYV - (pof) .

L=V(ypoVx- &) = (Vpo)(Vx - &) + V[(£ - V)po]
= (£-V)Vpo = po (& - Vx) V.

Coefficients of unknowns in VSH :

g A (af9 bf> Cl’)! 5(/) A df

Lola Chabat B B March 19, 2025
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PART Il : Spectral solver - Resolution in radial symmetry

Alternative to obtain the system of equations

Unknowns: & =¢e +&, Oy

—(Ppo+ L)E + Véy =F,
Aby = —4nGV - (po§) .

L=V(ypoVx- &) = (Vpo)(Vx - &) + V[(£ - V)po]
= (£-V)Vpo = po (& - Vx) V.

& 5y (Perturbation of pressure)

—o’po € + V&, +8,Vdy + V&, =F,
8p=—(Vpo) - €E=poV-§
Sy =—E- Tpo— pocY - &
ASy = —4nGV - (po§) .

Coefficients of unknowns in VSH :

g A (af9 bfs Cl’)! 5(/) A df

Lola Chabat B B

& 5p<—>e(

March 19, 2025 26/34




PART Il : Spectral solver - Resolution in radial symmetry

Reminder of unknowns for 1.5D problem

Coefficients of unknowns in Vector spherical harmonics

& o (ap, by, r), ‘ 8y & dy ‘ dp & e

@ Objective : obtain a formulation affine in o

@ 4 unknowns obtained after Liouville change of variables for the regular singularities

a[ = rx/ﬁa[, é{ = —¢€y, Zig = \/%d[, and Wy = I‘CI[.

o first order problem

Lola Chabat - - March 19, 2025 27/34



PART Il : Spectral solver - Resolution in radial symmetry

First order eigenproblem

Objective : Find U = (2[) and V= (gf) such that
! ‘ coupled with BC :
e at r = 0, singular regular
a
L8 - o’ =0;
0 U+ AU+ Ay V = * (MU + M V) o
w§+(r% —0)d, = 0.

(8 (1)) oV + AV +A,U * at rp =1.001,
zero-surface

~ 2 _ 7N\ —
poee + (po o Ehe = po@p)a; =0 Lagrangian pressure

_ 02( (_01 8) a,V+MVV+MVL,U)

(04 ~
[ v, + % d;]| = —4xGpoa, Jump condition

® at rmax, exact DtN o
W, + (!+1+r%)dg:0
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PART Il : Spectral solver - Resolution in radial symmetry

DG method - key points

Local problem |On each element K, of the mesh,

_/Ke U(arw)+/K5(Auu)w+/l<e(AWV)W+/aKe UW:gZ(/KE(MuU)W+/KE(MWv)W),
/e (g _01) V(arW)+//<e(AVV)W+/I<e(AVUU)W+[9Ke (g (1)) ow
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PART Il : Spectral solver - Resolution in radial symmetry

DG method - key points

Local problem |On each element K, of the mesh,

—/Ke U(arW)+[(5(AUU)W+/<E(AUVV)W+‘/8KE0W=02(/KE(MUU)W+/KE(MWV)W),
0

/e (g _01) V(arW)+'/K€(AVV)W+/K6(AVUU)W+/3K6 (0 (1)) oW
/Ke (1 0) V(arw)+/1<6(MVV)W+/K€(MWU)W+/3KE (_01 0

0 0

with the expression of the numerical fluxes in the interior faces
O=(uresluL V=r-sIvI- (T )l
- 207 - 2 0 14

and adapted numerical fluxes on the exterior faces.

We made a reverse integration by part on the first equation and then ...
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PART Il : Spectral solver - Resolution in radial symmetry

DG method - key points

‘ Global problem ‘Sum on all elements of the mesh.

/Q(a,u)w+/Q(AL,U)W+/Q(AWV)W—sh(U, W)=a2(/Q(MuU)W+/Q(MWv)W),

0 0 0 0 0 0) o
/Q(O _1) V(arW)+'/§2(AVV)W+L(AVUU)W+(0 1) (sp(W, V) — (U, W))+£B (O 1) vw

:52(/9(; 8) V(a,W)+/Q(MVV)W+/Q(MVL,U)W+(_01 8) (sp(W, V) = (U, W))+/zs (_01

(=]

0) \“/W)
with sh(U,W):/Z({W}—%[W]])-[[U]], r(U,W)=/Z (Toe T(L)(I[U]H[W]])
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PART Il : Spectral solver - Resolution in radial symmetry

Numerical results 3 : LDG eigensolver

-------- computed eigenvalues

—  Gyre eigenvalues

@ Use of Arpack solver.

‘ ‘ ‘ ‘ @ Mesh : interior size hy = 1Te — 03
2.2 2.4 2.6 2.8

frequency (mHz) and exterior size h, = 5¢ — 04.

N
o Ll

Comparisons of eigenvalues obtained by Gyre solver and

by our eigensolver at £ = 1. . :
Our eigenvalues match with EV

obtained with Gyre solver.

RHD Townsend and SA Teitler Gyre : an open-source stellar oscillation code based on a new magnus multiple shooting scheme
Monthly Notices of the Royal Astronomial Society,2013
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PART Il : Spectral solver - Resolution in radial symmetry

Comparison between eigensolver and GK solver

E —— Green’s function |ag(1, 1, w)|
- [ P computed eigenvalues
3 1
<
B
e The peaks of a, match with
H ‘ E the eigenvalues.
2 2.25 2.5 2.75 3
frequency (mHz)
Superposition of Green kernel of the wave problem and
eigenvalues at £ = 1.
Lola Chabat -
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PART Il : Spectral solver - Resolution in radial symmetry

Application : Validation by comparisons with HMI observables

—— Green’s function |ag(1, 1, w)|
-------- computed eigenvalues
— HMI observations

lap(1,1,w)]|

e The peaks of a, match with
the eigenvalues.

! !
2 2.25 2.5 2.75
frequency (mHz)

e Ll

e Both match the HMI EV.
Superposition of solutions of the wave problem and

eigenproblem at £ = 1.

e Validation of HDG wave
problem solver and LDG
eigensolver.

Lola Chabat B
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Application : Validation by comparisons with HMI observables

—— Green’s function |ag(1, 1, w)|
-------- computed eigenvalues
— HMI observations

lap(1,1,w)]|

e The peaks of a, match with
the eigenvalues.

! !
2 2.25 2.5 2.75
frequency (mHz)

e Ll

e Both match the HMI EV.
Superposition of solutions of the wave problem and

eigenproblem at £ = 1.

e Validation of HDG wave
problem solver and LDG
eigensolver.
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PART Il : Spectral solver - Resolution in radial symmetry

Summary / perspectives

@ We have built a computation framework employing the HDG and CG method without
Cowling approximation to compute the Green’s kernel.

o HDG method needs appropriate stabilization parameters.

o CG method not suited for BVP 2 with BC §, = 0.

e Cowling’s approximation generates a phase shift in solutions which is predominant at low
modes.

@ For the LDG eigensolver, our eigenvalues match with Gyre ones and then with Green’s
Kernel.

@ Removing Cowling approximation, our simulations have good correspondance with HMI
observables.
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ral solver - Re: ion in radial symmetry

Thank you.
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Appendix

Zero-pressure surface condition for a, at the surface

Perturbation to pressure

8y :=—E-Vpo—poctV - €
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Appendix

Zero-pressure surface condition for a, at the surface

Perturbation to pressure

(Sp = —g . Vpo - poCéV . g

coordinates) by

,  PoC [/ (2 apo) NAED)
———— |4, + — | a+ ——

Coefficients e, and a, (of radial €,) are related (in scaled

gé”l :

o ¢ e =-0 ~la+|= - >
CEDIDIN A7 (02 = S7) roy a*rpo
p = e Yo
=0 m=—¢ )
=_P
% = Ty
5. =0 & e™=0 J o complex frequency containing attenuation,
p = r =Y

CZ
S;=t(t+ 1)% Lamb frequency.
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Appendix

Zero-pressure surface condition

for a, at the surface

Perturbation to pressure

(Sp = —g . Vpo - poCéV . g

Coefficients e, and a, (of radial €,) are related (in scaled
coordinates) by

2 PS% |, (2 am) N+
00 ? egz—om a, + ;—— ag+Tg€ .
EDIDIT AT o ' 8
=0 m=—¢ o
Opy = _p—ﬁ
5,=0 & e'=0, J o complex freqzuency containing attenuation,
S;=t(t+ 1)r;_OL§ Lamb frequency.
Assume g7 =0 a
g e =0 = ra['+(2—ﬂr)a[=0.
near r =rp at r=r, Y

Lola Chabat
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Appendix

D-t-N boundary condition for 84 at rmax = rp + €

Assumption: pg =0 forr > rp .

Main ideas for derivation of DtN
Define B* := {|x| > rmax} and 5; = 5¢NB+ ‘

e On BY, 5; satisfies the Laplace equation,

A5;=0, and5;—>0asr=|x|—>0°(*)~

e General solutions of (*) have the form,
¢

o] b;n+
85=, D) YR,

=0 m=—¢

= 5,8} i i P ys).

£=0 m=

Goal :

Compute an artificiel boundary condition at,

r = rype With rmax>rp = 1.001

e 5t = 57 is harmonic on BT, in particular is H' in small
neighborhood of r = rmax,

oMt
_ " = _ %
5(;5 - 5(;5 for each o = 1’
= , at r = rmax
ara_ = ar5¢+ (¢,m) _ (f + 1)b¢r7n+
¢ ordy = 20
t rt+2

f+1
= |ddp+ ——dp =0 at r = rmax
s

Chaljub, E., & Valette, B. (2004). Spectral element modelling of

@ three-dimensional wave propagation in a self-gravitating Earth with an
arbitrarily stratified outer core.
Geophysical Journal International.
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Appendix

Numerical investigation 1: HDG method and penalization

‘ Goal : Compute the most physically adapted parameter in stabilization HDG method for 1.5D.

Main ideas for the choice of the stabilization parameter
For Helmholtz equation (—A — x%)u = f has stabilization
Vu-n= Vup-n+ikt(A—uy) with

Imk=0: >0, or
r=0(1) and
Imk#0: (Rer)(Imk) <0

For our case, a definition for the numerical Neumann trace for a; and dp have to be given :

rora=roran +talap—Aa) and  ropd = ropdy + 4(dp — Agq),

with stabilization factors denoted 7, 74.

Cui, Jintao & Zhang. (2014). An analysis of HDG methods for the Helmholtz equation. IMA Journal of Numerical Analysis.
@ IMA Journal of Numerical Analysis.

Gopalakrishnan J., Lanteri S., Olivares N. & Perrussel R. (2015). Stabilization in relation to wavenumber in HDG methods.
@ Advanced Modeling and Simulation in Engineering Sciences.
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Principle of the method

© Local problem on each element | C [0, rp] and TC [rp, Fmax]

o Unknowns (as, raj, , dp, rd; )
S~ S~——
Vh Wh

o First order mixed formulation with unknowns coupled with Dirichlet BC.

rovp+oivp+agap+aswp+agdy =1 on I = [rj riznl;
ror wh + Py wy + Po dp+ fsvh + faan=0  onl=[rjril;
B0y wh + By wy + B3 dp =0 on [ = [rj, rishl;

ap = A, on dy;

dy = A4 on d; U gy,
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Principle of the method for BVP 2

+ At
@ CGlobal problem and relation for numerical traces &/'7 = Aq and d,; = A4
Continuity condition

For any test function ¢, with n; the normal on the face
@ Interior nodes, Vf € X,

/[ﬁa?u,-nf]adf:o, Vi € (0, p) /[mTE,-nf]Edf:o VF € (0, 1) U (b, Fmax)-
Iy e

[Wh - ng] = —4nGrpoay, - nsg  atf =rp.

Essence of the HDG method : the formulation of the numerical fluxes

ra,ah(e) = ra,a,(f) +Ta(a,(f) - )sze)) nf(e) and ra,d,,(e) = rardlse) +fd(d,§e) - /1((;)) nf(e),

—_——— N~ —
‘7;7(6) Vf(’e) ’W\h(e)

(e)
Wh
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Appendix

Principle of the method for BVP 2

+ At
@ Global problem and relation for numerical traces @, = A, and d, = A4

Continuity condition

@ Boundary nodes, V§ € X g, only one side remains

Vhli = vi + 1a(ap — Ag)ng

and

Whli = wh + 74(dp — Ag)nj.
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Appendix

Principle of the method for BVP 2

+ At
@ Global problem and relation for numerical traces @, = A, and d, = A4
Continuity condition

@ Boundary nodes, V§ € X g, only one side remains

177,|f = vh+ra(ah—)ta)nf and ﬁ/ﬂf = Wh+Td(dh —Ad)nf.

W,-nf=0=vh-nf+ra(ah—/1a) atr=20

a
vh-nf=—(—$r+2))ta= Vh-ni+T.(an—A,) atr=rnp
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Principle of the method for BVP 2

+ At
@ Global problem and relation for numerical traces @, = A, and d, = A4

Continuity condition

@ Boundary nodes, V§ € X g, only one side remains

177,|f = vh+ra(ah—)ta)nf and ﬁ/ﬂf = Wh+Td(dh —Ad)nf.

W,-nf=0=vh-nf+ra(ah—/1a) atr=20

a
W,-nf=—(—$r+2))ta=vh'nf+ra(ah—)ta) atr=rp

ﬂ-nfz—fﬂd:Wh~nf+1'd(dh—).d) atr=20

Wh - Nf =—(t+1) Ay = Wh‘nf+Td(dh_/1d) at r = rmax-
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Appendix

Result 1: HDG method and choice of the stabilization parameter

Choice 1: Choice 2 (%) :
Ta:TdZ]; Ta:—r(TS;/S[—i\/—V[n);
Note v = 1 for right end-point of an interval tg=(1—nr), (t=0) and r4=1- /[({;_’_ ), (£>0).

and v = —1 for left end-point.
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Appendix

Result 1: HDG method and choice of the stabilization parameter

Choice 1: Choice 2 (%) :
Ta:‘L'dZ]; Ta:—r(TS;/Sg—i\/—V[n);
Note v = 1 for right end-point of an interval tg=(1—nr), (t=0) and r4=1- /[({;_’_ ), (£>0).

and v = —1 for left end-point.

Main ideas of calculation (%) :

@ Step 1: Work with order 2 ODEs : motion equation and Laplace equation. (decoupling
unknowns a and d)

@ Step 2: Change of variable and rewriting under Schrédinger’s form in 1D.
Motion equation: a= ;@ (-3*+ Vy)a=f.
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Appendix

Result 1: HDG method and choice of the stabilization parameter

Choice 1: Choice 2 (%) :
Ta=7d=1; to=—r (3}/3¢ - W=Ven);
Note v = 1 for right end-point of an interval —(1— — —1_
and'v = <1 for left end-point. g=(1—-nr), ((=0) and tzg=1-+C(+1)n (£>0).

Main ideas of calculation (%) :

@ Step 1: Work with order 2 ODEs : motion equation and Laplace equation. (decoupling
unknowns a and d)

@ Step 2: Change of variable and rewriting under Schrédinger’s form in 1D.
Motion equation : a =3, @, (=2 + Vp)a=f. B
Laplace equation: d = r~'d; (=d*>+t(¢+1)/r*) d; = 0.
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Appendix

Result 1: HDG method and choice of the stabilization parameter

Choice 1: Choice 2 (%) :
Ta=7d=1; to=—r (3}/3¢ - W=Ven);
Note v = 1 for right end-point of an interval —(1— — —1_
and'v = <1 for left end-point. g=(1—-nr), ((=0) and tzg=1-+C(+1)n (£>0).

Main ideas of calculation (%) :

@ Step 1: Work with order 2 ODEs : motion equation and Laplace equation. (decoupling
unknowns a and d)

@ Step 2: Change of variable and rewriting under Schrédinger’s form in 1D.
Motion equation: a= 3, @ (=7 + Vp)a=f.
Laplace equation: d = r~'d; (=d*>+t(¢+1)/r*) d; = 0.
@ Step 3: Inspired from the stabilization employed in Helmholtz equation
(=A —x*)u=f has stabilization Vu-n= Vup-n+ixt (A - up)
witht=0(1) and Imk =0 : 7> 0, oflmx #0 : (Rer)(Imk) < 0.
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Result 1: HDG method and choice of the stabilization parameter

Choice 1: Choice 2 (%) :
Ta=7d=1; to=—r (3}/3¢ - W=Ven);
Note v = 1 for right end-point of an interval —(1— — —1_
and'v = <1 for left end-point. g=(1—-nr), ((=0) and tzg=1-+C(+1)n (£>0).

Main ideas of calculation (%) :

@ Step 1: Work with order 2 ODEs : motion equation and Laplace equation. (decoupling
unknowns a and d)

@ Step 2: Change of variable and rewriting under Schrédinger’s form in 1D.
Motion equation: a= 3, @ (=7 + Vp)a=f.
Laplace equation: d = r~'d; (=d*>+t(¢+1)/r*) d; = 0.
@ Step 3: Inspired from the stabilization employed in Helmholtz equation
(=A —x*)u=f has stabilization Vu-n= Vup-n+ixt (A - up)
witht=0(1) and Imk =0 : 7> 0, oflmx #0 : (Rer)(Imk) < 0.

Cui Jintao and Zhang Wujun (2014).
L@C} /ﬁn :lmalysis of HDG methods for the Helmholtz equation
= Chaba
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